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Abstract

New and original approaches to model subsurface scattering, in
computer graphics, have been introduced within the past decade. In
this paper we are particularly interested in the application of these
techniques in the context of achieving convincing looking human skin.
The papers which we consider to be seminal, on this subject, base their
analysis on several underlying theoretical principles which require an
intimate knowledge of concepts used in optics. For this reason we
provide, in our paper, a thorough walkthrough including all details
necessary to comprehend the full analysis.

Ultimately, during the process of rendering, with subsurface scat-
tering, an expensive integration step is performed. In this paper we
discuss some of the proposals given by various authors.
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1 Introduction

The visual characteristics of a material are due to the interaction between
light and the molecular structure and density of the medium. As an exam-
ple metal distinguishes from a soft material because it does not exhibit any
translucency due to subsurface scattering. This phenomenon occurs when
light enters the medium and scatters around internally. The light will either
be absorbed inside the medium or travel back out to the boundary of the
medium and leave it while moving in some final outgoing direction. Techni-
cally, this light might scatter in the outer medium, let this be air, and return
to the embedded medium. However, for simplicity it is most common in com-
puter graphics to assume that light travels through air unobstructed and in
straight lines. Given this approximation the problem, in the context of com-
puter graphics, is reduced to determining the quantity of light which travels
from a visible point, at the surface of a medium, and towards the observer.
Thus we do not have to account for air as a separate medium. Nevertheless,
even with this simplification one must still account for the complex path by
which light travels within the medium. For the general case this involves a
slow process in which the equation of transfer is solved numerically. For this
reason only a few papers in graphics have taken this approach to achieve sub-
surface scattering. Instead, it is common, to proceed under the assumption
that the reflectance model is determined by surface scattering. Any subsur-
face scattering is accounted for by a Lambertian component also known as a
diffuse term. This term reflects light evenly in all outgoing directions.

If the surface of a medium is rugged and rough, at a micro scale level,
then the reflected outgoing direction appears to be random which justifies
the even distribution. Additionally, for a highly scattering medium light
will follow, what appears to be a chaotic path inside the medium. Once it,
finally, returns to the surface and leaves the medium all sense of the initial
incident direction will be lost. This also agrees with the even distribution of
the diffuse term and for this reason, and because of its efficiency, it is often
used to account for both phenomena. Though this simplification is efficient
in terms of performance, the approximation breaks down when applied to
subsurface scattering in soft materials. This is the case because the model
does not take into account that at the end of the traveled path the exit and
entry locations, of the transmitted light, are generally not the same (see figure
1). To capture the true appearance of translucent materials light transferred,
beneath the surface, between surface points must be taken into account. This
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is true for many materials such as fruits, marble, ice, plants, skin, etc. In
this paper we are particularly interested techniques for producing convincing
looking human skin.

 medium

source

(a) translucent

 medium

source

(b) non-translucent

Figure 1: For a translucent material the point of exit, at
the surface, is in general not the same as that of entry as
shown in figure 1(a). For a non-translucent material they are
considered to be approximately the same as shown in figure
1(b).

In 2001 Henrik Wann Jensen et al. [JMLH01] introduced a technique
to computer graphics using an approximate model designed by Patterson
et. al [PCW89] of the medical physics community. The approximation was
designed to perform non-invasive measurements to be used during photody-
namic therapy. Given a laser light incident on a surface, of human tissue,
the method approximates the redistribution, due to internal multiple scat-
tering, of light across this surface. Such a redistribution function is known
as reflectance and describes the ratio between outgoing light at one surface
point as a result of incoming light at another. In this case the other point
is where the laser light is incident upon the surface. Jensen applies this
model, in the context of computer graphics, by considering local irradiance
as being injected into the medium by the laser light which is perpendicular
to the surface. This implies an approximation that the incident direction,
prior to entering the medium, has no effect on overall redistribution. For a
highly scattering medium this is justified by the observation that after a few
internal scattering events any sense of initial path is lost.

The motivation for using this reflectance profile is it allows us to determine
outgoing radiance as an integral across the surface as opposed to numerically
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solving the more general equation of transfer which is volumetric. Further-
more, the reflectance profile is equipped with an exponential fall-off which
enables us to accelerate the integration process.

The reflectance profile is based on several simplifications and assump-
tions which will be covered in sections 2.4–2.6. However, the most critical
simplification is that the derivation of the reflectance profile is based on a
semi-infinite plane-parallel medium with constant material properties. This
results in a single reflectance profile which is to be used at every shaded sur-
face point. Integrating the reflectance profile over the entire surface plane
gives us what is known as the total diffuse reflectance. Given an initial
contribution of light injected into the medium the value of the total diffuse
reflectance is the percentage, of this contribution, which will make it back up
to the surface and leave the medium. Since the reflectance profile is wave-
length dependent this means the total diffuse reflectance is also wavelength
dependent. Furthermore, since it dictates the percentage of light reflected
it relates directly to the concept of surface color used in computer graph-
ics. However, since the material properties are constant this means we have
one material color only which is not sufficient to capture the high frequency
variation in color found in human skin. It is pointed out in [JMLH01] that
volumetric variation in material properties would require a full participating
media simulation. Instead, it is assumed that the shape of the reflectance
profile remains constant and only varies across the surface by a scalar. This
scalar is wavelength dependent and corresponds to storing the color in a tex-
ture mapped to the surface of the medium. The issue is discussed in further
detail in section 3.5.

The claim is made in the more recent work by Craig Donner et al. [DJ05]
that this remedy is insufficient. In their paper the shape of the resulting
reflectance profile is constant as well, however, it is argued that the true shape
of the reflectance profile, corresponding to human skin, requires a model
which takes into account that the material properties change at different
levels of depth below the surface. When this is not taken into account, using
the method in [JMLH01], results become overly blurred or waxy. This is
the report given in [DJ05] and to account for this they employ a similar,
but more complex, approximate model based on multi–layered slabs. Each
slab has constant material parameters and these are stacked on top of each
other. Once again incident light is assumed to be injected, by a laser light,
perpendicular to the configuration. This multi–layer model is borrowed from
the optics community and is described in [CMZ97] and here in our paper
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in section 2.7. It is common in medical physics to think of the human skin
as composed of layers, corresponding to these slabs, and in [DJ05] these are
referred to as the following: epidermis, upper dermis and bloody dermis.
These define the skin from top to bottom where the initial two are slabs
and the bloody dermis is considered semi-infinite. The constant material
parameters of each of these three layers are given by a table in [DJ05] with
a reference made to the medical physics book [Tuc00].

During the development of our paper we have implemented the methods,
given in [JMLH01] and [DJ05], to produce their respective reflectance pro-
files. The results are shown in section 2.8 along with the reflectance profile
obtained using open source software known as MCML. The program was
written by Lihong Wang and Steven L. Jacques [WJ] and is also designed
to produce reflectance profiles given a configuration of multi–layered media.
Their software is based on an entirely different technique known as Monte
Carlo simulation and we use their program to verify our implementation.

Once a reflectance profile has been established this is used to determine
the outgoing radiance. This is done by an integration step performed across
the surface. It was suggested by Jensen in 2002 [JB02] that this step could
be accelerated by exploiting the rapid fall-off of the reflectance profile. This
is done using an octree structure to allow for a more crude precision, during
integration, at remote sample points. The method is explained in section
3.2.

Since then different authors have made attempts to solve this integral on
the GPU. Examples are papers such as [DS03] and [SKP09] which both use
a dual image–space representation. One as seen from the observer and the
other as seen from the light source. Both suffer from disadvantages such as:
the method assumes either a point or directional light source. Additionally,
such a method suffers from sampling density mismatches between the two
images which is a problem well known from shadow mapping and projective
texturing in general. Finally, unlike Jensen’s octree algorithm the integra-
tion step of these methods is performed for every light source. A different
approach to a GPU adaptation is suggested by Eugene d’Eon et al. in [dL07].
In this article the integration is performed by convolution in a 2D texture un-
wrap of the model. This is done by describing the reflectance profile using a
weighted sum of Gaussians. Each Gaussian is a separable convolution which
significantly accelerates the process. The details of this method are explained
in section 3.4. The primary disadvantages to this method are: though the
integration can be done as two full–screen passes it must be done per unwrap
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times the amount of Gaussians used in the reflectance profile. In their paper
[dL07] six Gaussians are used. Another problem is that the method only
accounts for local subsurface scattering and not effects such as bright light
transmitted through thin regions such as the ears of a human head. This
is referred to in [dL07] as global subsurface scattering and is ultimately ac-
counted for by resorting to a similar dual image–space representation. Thus
the amount of necessary integration steps is now multiplied by the number
of light sources in the scene.
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2 The Reflectance Profile

In this section we will clearify and derive the underlying mathematical prin-
ciples which lead to the reflectance profile used by Henrik Wann Jensen et
al. [JMLH01] and that which is used in Craig Donner et al. [DJ05]. These
are used to account for subsurface scattering during the rendering process.

Initially, we introduce in section 2.1 the basic terms associated with light.
We follow up in section 2.2 with the rendering equation, used in computer
graphics, to determine the quantity of light sent from a visible surface and
in the direction of an observer. In order to do so a transfer function, which
translates received light into reflected light, must be defined. In section 2.3 we
discuss the separation of this transfer function into a term which accounts
for subsurface scattering and one for surface scattering. To formulate the
former Jensen turns to the diffusion approximation which describes density
fluctuations. In this case density fluctuations of incoming light at points
within a medium. The diffusion approximation is derived in section 2.4.
Assuming we know the solution to the diffusion approximation, and sources
are isotropic, then a simple formulation of the reflectance profile emerges
which will be shown in section 2.5.

The formulation of the term, of the transfer function, which accounts for
subsurface scattering is determined by observing the density fluctuations of
light within a homogeneous semi-infinite plane-parallel medium. In this case
the source is a laser beam which is perpendicular to the surface plane. To
simplify the solution a common approximation, in optics, is applied which is
known as the dipole approximation. This yields a nice analytical solution to
the reflectance profile which is shown in section 2.6.

It is argued in [DJ05] that skin consists of multiple semi homogeneous
layers and for this reason a switch is made to the multipole approximation
which assumes the medium can be described by a stack of slabs such that
each slab has finite thickness and is homogeneous. The multipole method is
covered in section 2.7.

Finally, in section 2.8 we show the reflectance profiles we obtain given
parameters defined in [JMLH01] and [DJ05] and compare these to a Monte
Carlo simulation done using the software MCML.
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2.1 Radiance

Light is the result of photons moving in free space and through sparse me-
dia. Fundamentally, in computer graphics, we need to determine how many
photons collide with a visible surface for each unit of time. This value is
known as radiant flux, Φ, and is measured in Watts. Henceforth we will, for
brevity, refer to this simply as flux. A more discriminating way to measure
the density of photons is radiance, L(x, ~ω). Radiance imposes restrictions
by filtering out photons, at x, which are not within a differential frequency
band centered at some given frequency level and also photons which are not
within a differential solid angle around ~ω. It is measured in Wm−2sr−1Hz−1

where sr is steradian which is the unit solid angle. The differential flux, from
direction ~ω, flowing through an elementary area dA at x with the normal ~n
can at an infinitesimal level be determined by scaling the radiance by the
cosine to the angle between ~ω and ~n which is scalar projection. From this
we obtain the following equation which is also given by 7–1 in [Ish78]

d2Φ

dAd~ω
= (~ω • ~n)L(x, ~ω) (1)

The cosine term diminishes the density of photons arriving within dA when
the angle is large. An illustration of this is shown in figure 2.

(a) perpendicular incident angle (b) steep incident angle

Figure 2: In figures 2(a) and 2(b) the same solid of incoming
photons is shown. However, in 2(b) due to the incident angle
the photons are projected onto a larger area which diminishes
the density.

There exists an ambiguity in regards to radiance. It can either move along
the path of ~ω or it can be coming from ~ω. In this paper radiance received
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from the direction of ~ω is called incoming radiance L(x, ~ω) and radiance
moving along ~ω is outgoing radiance Lo(x, ~ω). Consequently, it follows that

Lo(x,−~ω) = L(x, ~ω) (2)

Similarly, the differential flux dΦ
dA

, per unit area, can be either incoming or
outgoing relative to a surface orientation ~n. These are known as irradiance,
I(x) and the radiocity B(x) and are equivalent to integrating equation (1)
over the hemisphere.

2.2 The rendering equation

The generally accepted reference model, in computer graphics, of global illu-
mination is known as the rendering equation and was introduced in [Kaj86].
The rendering equation is an adaptation of the work in [SH81] on the phe-
nomenon known as radiative heat transfer. It can be used to compute the
outgoing radiance at a hard surface where the medium does not exhibit any
subsurface scattering and it is given as the emitted radiance, Le, plus an
integral over all surfaces in the scene.

Lo(x→ xr) = Le(x→ xr)+

∫
S

fr(xt → x→ xr)Lo(xt → x)V (xt, x)G(xt, x)dxt

In this equation xt represents transmitting locations in the scene and the in-
tegration is done with respect to this variable. The constant x is some light
receiving surface location and the entire integral approximates how much of
it is reflected from x in the direction of the surface point xr. The function fr
is the bidirectional reflectance distribution function (BRDF), introduced by
[NRH+77], which multiplied by the incident differential flux gives the corre-
sponding differential outgoing radiance. The term Lo(xt → x) represents the
radiance sent, at xt, towards x. The light is attenuated as it travels towards
x and so to arrive at the incident flux at x the term is scaled by a geometric
term

~ωi =
xt − x
‖xt − x‖

G(xt, x) =
(~ωi • ~n) · (−~ωi • ~nt)

‖xt − x‖2

where ~n and ~nt are the surface normals at x and xt respectively. The de-
nominator of the geometry term can be explained as in [Jen01] - i.e. imagine
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photons resting on the surface of an expanding sphere. The density of pho-
tons will decrease proportionally to the area of the sphere. The two cosine
factors in the numerator take the orientation of the transmitting and re-
ceiving surface locations into account as shown in figure 2. The geometry
term should be recognized immediately by those familiar with the form fac-
tor used in radiosity based lighting methods. Finally, the term V (xt, x) is
one when xt and x are mutually visible and zero otherwise. This ensures
that x only receives from the single closest transmitter xt in every direction
~ωi. The observation allows us to rewrite the integral, by substitution, where
xt is replaced by the first obtained hit when shooting from x along ~ωi and

dxt = ‖xt−x‖2
(−~ωi•~nt)d~ωi. Thus, the integration is done over the hemisphere at x as

follows

Lo(x→ xr) = Lo(x, ~ωo)

= Le(x, ~ωo) +

∫
Ω2π

fr(x, ~ωo, ~ωi)L(x, ~ωi)(~ωi • ~n)d~ωi (3)

However, to evaluate outgoing radiance, a significant limitation in this model
is the assumption that light received at the position x is also reflected at x.
Though this approximation is valid for many metals it fails to capture the
soft appearance of translucent materials such as: skin, milk, etc. The ratio
between outgoing radiance, at xo, as a result of incoming differential flux, at
xi, is defined in [NRH+77] as the bidirectional scattering surface reflectance
distribution function (BSSRDF). Given a known BSSRDF, S(xi, ~ωi, xo, ~ωo),
the limitation is overcome by integrating the incoming radiance across the
scene. This allows us to account for radiance received across the entire scene
and subsequently transferred through the medium and exiting through a
differential area at xo in a direction within a differential solid angle around
~ωo. If we omit the emission term, we arrive at the following double integral

Lo(xo, ~ωo) =

∫
S

∫
Ω2π

S(xi, ~ωi, xo, ~ωo)L(xi, ~ωi)(~ωi • ~ni)d~ωidxi (4)

Like the BRDF, the BSSRDF S relates the differential outgoing radiance at
xo to the differential incident flux at xi (see [NRH+77]).

dLo(xo, ~ωo) = S(xi, ~ωi, xo, ~ωo)dΦi(xi, ~ωi) (5)

It follows from equation (1) that L(xi, ~ωi)(~ωi•~ni) represents the flux received
at xi within a differential area, dA, from a direction within a differential angle
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around ~ωi. By using this observation in equation (4), and by substituting
equation (5) into it, it follows that equation (4) is effectively summing up
all contributions in the scene that lead to outgoing radiance at xo in the
direction ~ωo.

2.3 The two-term BSSRDF

In practice, the task of determining the function of, S, is not a simple one.
This issue is even a problem for the simpler BRDF form, fr, and a common
approximation in computer graphics is to split it into two terms, fr ' fd+fs
where fd represents diffuse reflection and fs represents specular reflection.
Diffuse reflection occurs when light bounces off a surface which at a micro-
scale level has an uneven and rough terrain. This tends to make the reflected
direction more random and spread the out-going radiance evenly across the
hemisphere, Ω2π, which makes the observed result independent of the view-
direction ~ωo. Specular reflection represents the opposite phenomenon where
light coming from a single direction is reflected at a locally flat surface into
a single out-going direction and thus becomes view-dependent. Both diffuse
and specular reflection represent ideal cases.

Initially, this line of thinking might seem like a dead-end in regards to
the BSSRDF since S needs to take into account the entry location, xi, the
path along which the light has traveled inside the medium until it finally
reaches its point of exit xo. However, highly scattering soft materials actually
agree very well with the approximation that the outgoing radiance at xo is
diffuse since light which is transmitted into such a medium scatters around
almost chaotically and quickly begins to exhibit isotropic behavior within
the medium. This observation is made in chapter 9 in [Ish78].

The portion of light which is not transmitted into the medium, at xo, but
is reflected at the surface might be controlled by a different term similar to
the specular term in the approximate BRDF. Thus, we can approximate the
BSSRDF by

S(xi, ~ωi, xo, ~ωo) ' Sd(xi, ~ωi, xo, ~ωo) + Sr(xo, ~ωi, ~ωo) (6)

where Sd is used to approximate light which has been transmitted into the
medium at xi, then scattered around multiple times and finally transmitted
back out at xo in the direction ~ωo. The term Sr is used to determine the
amount of light reflected, directly at the surface, in the direction ~ωo. This
approximation is also used in [DJ05].
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This separation does not appear to simplify much since Sd still depends
on all four parameters. However, its primary dependency on the incoming
and outgoing directions ~ωi and ~ωo is mostly due to the different indices of re-
fraction, when the light transmits in and out of the medium. When incoming
radiance travels between media of different indices of refraction, µ1 and µ2, a
certain percentage is reflected at the boundary and the rest is transmitted
into the other medium. In the remainder the percentage of reflected radiance
function will be denoted ρr(x, ~ω) and the percentage of transmitted radiance
ρt(x, ~ω). In both cases ~ω is the direction of incoming radiance. The index
of refraction roughly describes the density of the material. In more specific
terms light traveling through a medium with index of refraction µ moves at
1
µ

times the speed of light in a vacuum. It is common in computer graph-

ics to evaluate ρr(x, ~ω) using the Fresnel equations or an approximation by
Schlick (see equations 2.29 and 2.30 in [Jen01]). The Fresnel equations are
derived from the Maxwell equations based on ideal circumstances where both
media are homogeneous, i.e., constant material properties and the interface
between them is planar. In the case where air represents the outer medium
and skin represents the embedded medium, the criteria of homogeneity is
approximately met. Subsequently, the Fresnel equations are used, for skin,
by Jensen in [JMLH01] to determine reflectance vs. transmittance. How-
ever, the surface of skin is by no means planar so it is decided in [DJ05] to
replace the use of Fresnel with a diffuse transmission function. This is done
by using a Torrance–Sparrow BRDF [TS67] to determine the reflectance at
the surface.

ρr(x, ~ω) =

∫
Ω2π

fr(x, ~ω
′, ~ω)(~ω′ • ~n)d~ω′ (7)

ρt(x, ~ω) = 1− ρr(x, ~ω) (8)

The second equation assumes that all light which is not reflected is transmit-
ted. It should also be noted that due to energy conservation ρr(x, ~ω) cannot
exceed 1.0.

A possible formulation for Sd can be determined by studying density
fluctuations of incoming light inside a medium. This is implicitly described
by the diffusion approximation which we will cover in the next section.
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2.4 The Diffusion Approximation

In this section we cover the diffusion approximation which consists of two
parts. That is a differential equation known as the diffusion equation and a
supplement known as the boundary condition. The solution to the diffusion
equation is the fluence, φ(x), which is the total incoming radiance at x. Since
this is an isotropic solution the boundary condition is used as an additional
constraint to account for the interface between adjacent media. The diffusion
approximation is based on the observation that the light distribution in highly
scattering media tends to become isotropic (see chap. 9 in [Ish78]). This is
also implied by the solution, φ(x), which is isotropic. The diffusion equation
is derived in section 2.4.1 and the boundary condition is covered in section
2.4.2.

2.4.1 The Diffusion Equation

To derive the diffusion equation we must start at the equation of transfer
which is a volumetric differential equation of radiance. It belongs to transport
theory which was initiated by Schuster in 1903. A thorough description of
transport theory can be found in [Cha50].

(~ω • ∇)L(x, ~ω) = −σt(x)L(x, ~ω) + σs(x)

∫
Ω4π

p(x, ~ω′, ~ω)L(x, ~ω′)d~ω′ (9)

The equation describes the rate of change in radiance. When a photon travels
it may either move unaffected or interact with the medium in which it is
traveling. If it does interact, it will either be absorbed or be scattered in
a new direction. The quantity of photons scattered per unit traveled is
given by σs(x) and the quantity absorbed is given by σa(x). The extinction
coefficient is given as σt(x) = σs(x)+σa(x). Thus, the rate of loss in radiance
flowing in the direction −~ω at x is accounted for by the first term on the
right side of equation (9). The second term accounts for gain in radiance due
to in-scattering. This is done by integrating the radiance over all possible
directions. During integration the radiance is scaled by σs(x) and the phase
function p(x, ~ω′, ~ω). The former will give us the portion of radiance from ~ω′

scattered at x and the latter will give us the portion of this contribution which
scatters specifically into the direction ~ω. The phase function is a probability
density function and obeys

∫
Ω4π

p(x, ~ω′, ~ω)d~ω′ = 1. Though the scattering
and absorption depend on the point x, they will, for brevity, be denoted σs
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and σa. However, for a homogeneous medium σs and σa are constant for any
point inside the medium.

When studying the transport of radiance inside some medium it is com-
mon to divide the radiance into two parts (see section 7.4 in [Ish78]). The
reduced radiance Lri(x, ~ω) is radiance which has entered the medium but
has not yet scattered or been absorbed. The other part, diffuse radiance
Ld(x, ~ω), is radiance which was created inside the medium due to emission
or in-scattering of reduced/diffuse radiance. An illustration is shown in figure
3. Given this separation reduced radiance has no gain due to in-scattering

Source

Medium

Lri

Ld

Figure 3: The source emits light which enters the sparse
medium as shown here. The portion of this contribution
which has survived absorption and has scattered once or more
is referred to as diffuse radiance Ld. This portion of the radi-
ance is illustrated by dashed lines. Prior to this first scattering
event it is referred to as reduced radiance Lri.

as opposed to diffuse radiance which has gain due to in-scattering of both
diffuse and reduced radiance. We can think of in-scattered reduced radiance
as emission ε(x, ~ω) in the transport equation of diffuse radiance.

ε(x, ~ω) = σs

∫
Ω4π

p(x, ~ω′, ~ω)Lri(x, ~ω
′)d~ω′ (10)

(~ω • ∇)Lri(x, ~ω) = −σtLri(x, ~ω)

L(x, ~ω) = Ld(x, ~ω) + Lri(x, ~ω)

This is because reduced radiance is converted into diffuse radiance only once
inside the medium. From then on it remains diffuse rediance until it is either
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absorbed or leaves the medium. The equation of transfer of diffuse radiance
is now given by the following equation

(~ω•∇)Ld(x, ~ω) = −σtLd(x, ~ω)+σs

∫
Ω4π

p(x, ~ω′, ~ω)Ld(x, ~ω
′)d~ω′+ε(x, ~ω) (11)

In the following we will show how a specific two–term approximation,
of Ld(x, ~ω), in equation (11) will allow us to reduce the equation into a
simplified version known as the diffusion equation. The two terms used in
the approximation are the fluence, which was conceptually introduced at the
beginning of section 2.4, and the vector irradiance. These are given by the
following equations

φ(x) =

∫
Ω4π

Ld(x, ~ω)d~ω

~E(x) =

∫
Ω4π

Ld(x, ~ω)~ωd~ω

Since the fluence, φ(x), is the total incoming radiance at x this also implies
that when divided by 4π it is equal to the average incoming radiance at x.
The vector irradiance ~E(x) is the expected direction for incoming radiance. If

we consider the normalized vector irradiance, ~ve =
~E(x)

‖ ~E(x)‖
, then the magnitude

of ~E(x) is the irradiance from ~ve minus the irradiance from the opposite
direction −~ve. This is given by the following equation

‖ ~E(x)‖ = ~ve • ~E(x)

=

∫
Ω4π

Ld(x, ~ω)~ve • ~ωd~ω

and by equation (1). We will now proceed by showing how a projection of
the diffuse radiance onto the first two frequency bands of the Real Spherical
Harmonics basis functions results in the two–term approximation involving
φ(x) and ~E(x).

The diffuse radiance, at some point x, is a spherical function Ld : S2 → R.
Though radiance may, in reality, not be piecewise continuous we operate un-
der the assumption that it is both bounded and piecewise continuous. This
makes Ld Riemann integrable and so we can project it onto an orthonor-
mal basis such as the Real Spherical Harmonics functions. These are or-
ganized in bands of increasing frequency such that each band, indexed by
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l ∈ {0, 1, 2, . . . }, is represented by 2l + 1 basis functions which are indexed
by m ∈ Z such that −l ≤ m ≤ l. Subsequently, the basis functions Y m

l (~ω)
are doubly indexed and projection, of a function f : S2 → R, onto the
first L ∈ N frequency bands is defined as the partial sums of the expanded
spherical harmonics series

sL(f)(~ω′) =
L−1∑
l=0

l∑
m=−l

(∫
Ω4π

f(~ω) · Y m
l (~ω)d~ω

)
Y m
l (~ω′) (12)

A thorough introduction to Spherical Harmonics is beyond the scope of this
paper. For additional information, the reader is referred to [Mac48]. Next,
let the vector ~ω be given by its components such that ~ω = (ω1, ω2, ω3). Thus,
the Cartesian version of the first two bands of basis functions is given as

Y m
l (~ω) m = −1 m = 0 m = 1

l = 0 1
2

√
1
π

l = 1 1
2

√
3
π
ω2

1
2

√
3
π
ω3

1
2

√
3
π
ω1

where ~ω is a unit vector. Thus the two-term expansion obtained by the first
two bands, for a low frequency approximation, is given by insertion of Ld
into equation (12) with L = 2 which yields

Ld(~ω
′) ' s2(Ld)(~ω

′)

=
1

4π
φ(x) +

3

4π
~E(x) • ~ω′ (13)

We now proceed with our derivation of the diffusion equation. Similar to
the definition of φ(x) and ~E(x) let the fluence and the vector irradiance of ε
(see eq. (10)) be given as

Q0(x) =

∫
Ω4π

ε(x, ~ω)d~ω

~Q1(x) =

∫
Ω4π

ε(x, ~ω)~ωd~ω

When we integrate the left side of equation (11) we get the divergence of the
vector irradiance∫

Ω4π

(~ω • ∇)Ld(x, ~ω)d~ω = ∇ •
∫

Ω4π

Ld(x, ~ω)~ωd~ω

= ∇ • ~E(x)

= div[ ~E(x)]
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The divergence of a vector field is the extent to which more flow is exiting
or entering an infinitesimal volume at a point x. By integrating both sides
of equation (11) we get the following formula for the divergence

∇ • ~E(x) = −σaφ(x) +Q0(x) (14)

As we see loss is determined by the absorption and gain by any external
sources injecting reduced radiance into the medium.

In the following the approximation s2(Ld) ' Ld will be used in equation
(11). As promised the process will ultimately lead to the diffusion equation.
Initially, let the substitution be applied to the integral term of equation (11)
and also assume the phase function p is given as a function of cosine to the
angle between the in-scattered and out-scattered directions ~ω′ and ~ω. This
is known as the phase angle.∫

Ω4π

p(~ω′ • ~ω)s2(Ld)(~ω
′)d~ω′ =

∫
Ω4π

p(~ω′ • ~ω)

(
1

4π
φ(x) +

3

4π
~E(x) • ~ω′

)
d~ω′

=
1

4π
φ(x) +

3

4π

∫
Ω4π

p(~ω′ • ~ω) ~E(x) • ~ω′d~ω′

=
φ(x) + 3 ~E(x) • ~ω

∫
Ω4π

p(~ω′ • ~ω)~ω′ • ~ωd~ω′

4π
(15)

The last step is the result of rotating the integral such that the vector ~ω
points down. The vectors ~E(x) and ~ω′ can thus be expressed in spherical
coordinates (θ1, ϕ1) and (θ2, ϕ2), given in this frame, where the domain is

[0; 2π[×[0; π]. Let φ be the angle between ~E(x) and ~ω′. Cosine to the angle
is expressed in spherical coordinates as

cosφ = cosϕ1 cosϕ2 + sinϕ1 sinϕ2 cos(θ1 − θ2)

During integration the second term is terminated since
∫ 2π

0
cos θdθ = 0. This

completes the last step in equation (15) since ~E(x) • ~ω = ‖ ~E(x)‖ · cosϕ1 and

~ω′ •~ω = cosϕ2. In addition to this we used that ~ω and ~E(x) remain constant
during integration. Next by defining the mean cosine as

g =

∫
Ω4π

p(~ω′ • ~ω)(~ω′ • ~ω)d~ω′
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we can write equation (15) as a simpler expression∫
Ω4π

p(~ω′ • ~ω)s2(Ld)(~ω
′)d~ω′ =

φ(x) + 3g ~E(x) • ~ω
4π

And by defining the reduced scattering and extinction coefficients as

σ′s = σs · (1− g)

σ′t = σ′s + σa

we are finally ready to substitute s2(Ld) into both sides of equation (11).

(~ω • ∇)

(
φ(x) + 3 ~E(x) • ~ω

4π

)
= −σt

(
φ(x) + 3 ~E(x) • ~ω

4π

)
+ σs

(
φ(x) + 3g ~E(x) • ~ω

4π

)
+ ε(x, ~ω)

= −σa
4π

(
φ(x) + 3 ~E(x) • ~ω

)
− σs

3

4π
(1− g) ~E(x) • ~ω + ε(x, ~ω)

= −σa
4π
φ(x)− σ′t

3

4π
~E(x) • ~ω + ε(x, ~ω) (16)

The equation (16) can be further simplified. For any vector ~V the following
identities hold, ∫

Ω4π

~ω(~ω • ~V )d~ω =
4π

3
~V∫

Ω4π

~ω(~ω • ∇(~V • ~ω))d~ω = ~0

These are given in section 9 in [Ish78]. Scaling equation (16) by ~ω and
integrating over the sphere yields

∇φ(x)

3
= −σ′t ~E(x) +

∫
Ω4π

ε(x, ~ω)~ωd~ω

Let the diffusion constant be given as D = 1
3σ′t

. Next we isolate ~E(x) and

replace the integrated vector emission by the equivalent Q1(x).

~E(x) = −∇φ(x)

3σ′t
+

1

σ′t
Q1(x)

= −D∇φ(x) + 3DQ1(x) (17)
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Note that this expression (17) for the vector irradiance was derived based on
the assumptions that Ld = s2(Ld) and that the phase function is a function
of the phase angle. Now we substitute this result into the divergence, eq.
(14), of ~E(x) which completes the diffusion equation

D∇2φ(x) = σaφ(x)−Q0(x) + 3D∇ • ~Q1(x) (18)

The diffusion equation is a partial differential equation which describes den-
sity fluctuations. In this case fluctuations occurring in the average incoming
radiance inside a medium. In other words the fluence φ(x), to be valid,
should obey the diffusion equation.

2.4.2 Approximate Boundary Condition

Generally, it is not easy to determine the fluence φ(x). Even for the case of a
homogeneous, but finite, medium there typically is no explicit solution. For
a candidate φ(x) to be valid it must be a solution to the diffusion equation
(18). For a trivial case such as an infinite homogeneous medium with an
isotropic point light source there exists such a solution. Such a light source
emits reduced radiance by the following equation

εx0(x) =
P0

4π
· δ(‖x− x0‖)m−3sr−1

also given as equation 7-35 in [Ish78] where P0 is the power. The Dirac δ
function ensures emission only occurs at the position x0 and obviously εx0(x)
is defined to be independent of ~ω which gives Q1(x) = 0. By rearranging
terms and dividing on both sides by D of the diffusion equation we get the
following simplification.

∇2φ(x)− σ2
trφ(x) = −3σ′tQ0(x)

where σtr =
√

3σaσ′t is the effective transport coefficient. Next, inserting
εx0(x) into Q0(x) and substituting the result into this simplified diffusion
equation gives

∇2φ(x)− σ2
trφ(x) = −P0

D
· δ(‖x− x0‖)

The final solution to such a differential equation is

φ(r) =
P0

D

e−σtrr

4πr
(19)
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where r = ‖x−x0‖. This is also the solution given by equation 9-53 in [Ish78]
and by Jensen in [JMLH01].

For the case of a finite homogeneous medium in empty space it is more
complicated. Diffuse radiance is the result of at least one scattering event
within the medium. Diffuse radiance may leave the medium but since there
is no scattering in empty space it does not return to it. In other words for
a boundary point x, with the external and internal hemispheres Ω2π+ and
Ω2π−, we have Ld(x, ~ω) = 0 when ~ω ∈ Ω2π+. This property is directionally
dependent which implies the need to use a constraint. This is a supplement
to the requirement that φ(x), which is isotropic, must be a solution to the
diffusion equation (18). Such a constraint is known as a boundary condition.
Strictly speaking the condition is only true for convex media. For additional
details the reader is referred to [Ish78].

The criteria of the boundary condition states that diffuse radiance must
come from within the medium. However, the diffusion equation is derived
from a low-order spherical harmonics expansion of the diffuse radiance Ld(x, ~ω)
given by equation (13) which has a simple angular distribution. Furthermore,
the diffusion equation itself has an isotropic solution which does not take the
boundary case into account. Because of the approximate representation the
boundary condition cannot be satisfied in the exact form. Instead one must
use an approximate boundary condition. The approximate boundary condi-
tion used in the diffusion approximation (see [Ish78]) is that the total diffuse
flux received from outside the boundary must be zero.∫

Ω2π

Ld(x, ~ω)(~n • ~ω)d~ω = 0

However, if the finite medium is embedded in another medium (with another
index of refraction) as opposed to just empty space. Then some of the out-
going diffuse radiance will bounce off the interface between the medium and
the outside and back into the medium itself. Thus, instead of receiving no
diffuse radiance at the surface from directions ~ω in the upper hemisphere we
receive whatever reflects back into the medium at the interface. This gives
us the following equation.∫

Ω2π+

Ld(x, ~ω)(~n • ~ω)d~ω = Fdr

∫
Ω2π−

Ld(x, ~ω)(−~n • ~ω)d~ω (20)
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where Fdr is the diffuse reflectance.

Fdr =
1

π

∫
Ω2π

Fr(µ,~n • ~ω′)(~n • ~ω′)d~ω′ (21)

and µ is the ratio of indices of refraction between the embedded medium and
the outer medium. The above integral (21) is given, in [JMLH01], without
the division by π. This is an error and will yield diffuse reflectance values
in the range [0; π]. However, an approximate equation, given in [JMLH01],
is used instead which does correspond to the correctly normalized equation
(21).

The boundary condition can be expressed in terms of the fluence alone un-
der the assumption that the reduced radiance ε(x, ~ω), at every x, is isotropic,
i.e., the term is independent of ~ω. In this case Q1(x) = 0 and equation (17)
reduces to

~E(x) ' −D∇φ(x) (22)

We proceed by inserting the already assumed approximate form (13) into the
boundary condition (20). If we do this on the left side we get∫

Ω2π+

(
1

4π
φ(x) +

3

4π
~E(x) • ~ω

)
(~n • ~ω)d~ω =

φ(x)

4
+

3

4π

∫
Ω2π+

(~n • ~ω)( ~E(x) • ~ω)d~ω

=
φ(x)

4
+

3

4π
~n • ~E(x)

∫
Ω2π+

(~n • ~ω)2d~ω

=
φ(x)

4
+

3

4π
~n • ~E(x)

2π

3

=
φ(x)

4
+

2

4
~n • ~E(x)

In the second step the same trick was used as in equation (15). Next we
insert the dot product between approximation (22) and ~n which gives us a
new version, of equation (20), in terms of fluence

φ(x)− 2D(~n • ∇φ)(x) = Fdr · (φ(x)− 2D(−~n • ∇φ)(x))

By rearranging terms we arrive at the final form

φ(x)− 2DA(~n • ∇φ)(x) = 0 (23)

where A = 1+Fdr
1−Fdr

. This is the final approximate boundary condition for points
x at the surface of the embedded finite medium. The equation is also given
by Jensen on page 3 in [JMLH01].
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2.5 Approximation of the Diffuse BSSRDF

In this section it will be shown how we can evaluate the diffuse BSSRDF,
Sd, when all sources are isotropic. Thus approximation (22) is accurate and
when the dot product between this and the inward normal −~n is applied we
get

D(~n • ∇φ)(x) ' −~n • ~E(x)

=

∫
Ω4π

Ld(x, ~ω)(−~n • ~ω)d~ω

=

∫
Ω2π−

Ld(x, ~ω)(−~n • ~ω)d~ω (24)

where x is at the surface of the medium. The switch in equation (24) from
integrating over the entire unit sphere to the inner hemisphere is a result of
the boundary condition which states that diffuse radiance is internal.

If we consider Lo(x, ~ω) the outgoing diffuse radiance then given equation
(2) it follows that equation (24) is equal to

∫
Ω2π+

Lo(x, ~ω)(~n • ~ω)d~ω which,

relative to the normal ~n, is the outgoing radiant flux area density B(x) (see
equation (1)).

D(~n • ∇φ)(x) ' B(x) (25)

Next imagine flux being injected into the medium from some differential
area at xi. Furthermore, assume we know the corresponding fluence φ(x)
such that it approximates, specifically, how much of the flux emitted, from
this area, at xi is received at x as part, dB(xo), of the total outgoing radiant
flux area density. We can now evaluate the reflectance, at xo, as the following
ratio

R(xo, xi) =
dB(xo)

dΦ(xi)

' D(~n • ∇φ)(xo)

dΦ(xi)
(26)

This equation is given by H. Jensen, on page 3, in [JMLH01]. The ratio
approximates the radiant exitance at xo that occurs as a result of irradiance
at xi.

To approximate the diffuse BSSRDF, Sd, we need to approximate the
outgoing radiance as opposed to radiant exitance at xo. Furthermore, we
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must also take into account that light generated outside the medium must
make it through the interface between the medium and the outside. This is
controlled by the transmittance ρt(xi, ~ωi). Finally, the resulting radiant exi-
tance at xo must transmit, ρt(xo, ~ωo), back out through the interface towards
the eye of the camera. In section 2.3 the diffuse BSSRDF, Sd, is defined under
the assumption that radiance moving inside the medium exhibits isotropic
behavior. This assumption is based on the observation that in highly scat-
tering media the light tends to distribute evenly in all directions. From this,
and equation (1), it follows that the correspondence between diffuse radiosity
and outgoing diffuse radiance is given by

B(xo) '
∫

Ω2π+

Lo(xo)(~n • ~ω)d~ω

= Lo(xo)

∫
Ω2π+

~n • ~ωd~ω

= π · Lo(xo) (27)

Now finally given equations (5) and (26) we arrive at the following diffuse
BSSRDF

Sd(xi, ~ωi, xo, ~ωo) =
1

π
ρt(xo, ~ωo)R(xo, xi)ρt(xi, ~ωi) (28)

This equation is also given by H. Jensen, on page 3, in [JMLH01]. To sum-
marize equation (28) the procedure is as follows. Initially, the incoming
radiance from some direction ~ωi must transmit through the interface. Once
it has made it through, ρt(xi, ~ωi), there is an implicit assumption that sense
of direction is lost immediately given that R(xo, xi) ignores both ~ωi and ~ωo.
In other words, for simplicity, light injected into the medium at xi from any
direction ~ωi is, past the point of transmittance, entirely diffuse. In reality
it seems unlikely that we can completely dismiss direction of the incoming
radiance past the point of transmittance but to simplify the BSSRDF it
is a reasonable approximation made by Jensen. Finally, once the radiance
makes it to xo it has to transmit back out through the interface ρt(xo, ~ωo)
in the right direction. An additional assumption made, in the beginning of
this section, to create approximation (26) was that any existing emitters are
isotropic. The only missing element to finalize Sd is determining the fluence
φ(x) resulting from diffuse radiance injected at some xi. This is required to
complete equation (26) and once we have this we have an explicit function
to approximate the BSSRDF.
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2.6 The Dipole Approximation

Even for a homogeneous medium the case of an arbitrary finite topology typ-
ically does not have an analytical solution φ(x) that obeys both the diffusion
equation (18) and the boundary equation (23). For the case of subsurface
reflection it is pointed out in [JMLH01] that this can be modeled as a semi-
infinite plane-parallel medium. In other words a plane separating R3 such
that all points on one side belong to one medium and all points on the other
side belong to another medium. The separating plane is the interface between
the two media. Both media are homogeneous but do not have the same ma-
terial properties. Even under such simplified circumstances the solution for
a point light, given by equation (19), does not obey the boundary condition
(23). Furthermore, it is more practical to define the diffuse BSSRDF, Sd,
in a way which is independent of the actual point lights and their specific
locations in the scene. This is possible due to the approximation that the
transmitted radiance, at xi, quickly becomes isotropic. This was mentioned
in section 2.5. Since we can ignore the original incoming direction ~ωi, past
transmittance, we can consider the total irradiance received at xi as having
been injected by a simple vertical cylindrical beam over xi. Subsequently,
we need to determine the resulting fluence φ(x) given the imaginary source
beam over xi. This will allow us to determine approximation (26) and thus
complete the approximation of the diffuse BSSRDF given by equation (28).

Ironically, even this simplification is not adequate to derive a simple re-
sult for the fluence. Jensen points out that the result involves an infinite sum
of Bessel functions [JMLH01]. Furthermore, he seeks a simple solution that
does not involve infinite sums or numerical solutions. For this reason Jensen
turns to the work of Eason [EVNT78] and Farrell et al. [FPW92]. Their
method approximates the volumetric source distribution, resulting from the
cylindrical beam, using two point lights. These two point lights are posi-
tioned like a dipole. The first point light emits positive radiance, inside the
medium of interest, below the plane. It is referred to as the real light source
and is placed at a distance zr = 1

σ′t
below xi. This distance is known as

one mean free path and represents the average distance a particle will travel
before its first interaction inside the medium. The reason for this is that
σt is the sum of absorbed and scattered photons per unit traveled. Subse-
quently, the reciprocal is the average distance traveled before a photon gets
absorbed or scattered. Thus, in incremental terms, the first time photons
injected by the laser beam, interact with the medium is approximately at
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this distance underneath the interface. By replacing the laser beam by the
real light source, which is isotropic, there is an additional assumption that
the first bounce, at the specified distance underneath the interface, is evenly
distributed. Effectively, the real source is emulating the redistribution of
flux, passed by the laser beam, past the first bounce inside the medium. The
power P0 of the real source is inherited from the laser beam but since a cer-
tain portion of the flux will be absorbed while traveling one mean free path
below xi the power of the real source is adjusted by scaling by the reduced
albedo α′ = σ′s

σ′t
. In other words, any flux that does not get absorbed is scat-

tered in a random direction. The second light source emits negative radiance
and is referred to as the virtual light source. It is placed at a slightly greater
distance zv = zr + 4AD above the plane at xi. The reason the second light
source is needed is because of the boundary condition (23). The dipole model
does not satisfy it exactly but it does satisfy a common approximation of it
known as the extrapolated boundary condition (see figure 4). This approxi-

2AD+zr

2AD

zr

virtual source

real source

extrapolated plane

 medium

Figure 4: This figure shows the dipole configuration. The
real source is placed at a distance zr below the surface. The
extrapolated plane is at 2AD above the surface and, finally,
the virtual source mirrors the real source in the extrapolated
plane. The two sources cancel each other out at points in this
plane.

mate condition states that the fluence φ(x) must be zero at an extrapolated
flat surface outside the medium at a distance zb = 2AD from the physical
boundary of the medium. For a semi-infinite slab such as ours this condition
can be achieved with two isotropic point sources. The extrapolated bound-
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ary condition is a sensible replacement for (23) assuming a linear behavior
of the fluence around the geometrical boundaries [CMZ97].

For any point x we can express the distances to the real and virtual light
source as

dr(x) = ‖(xi − zr · ~n)− x‖
dv(x) = ‖(xi + zv · ~n)− x‖

And now given equation (19) we arrive at the dipole fluence

φ(x) =
α′P0

4πD

(
e−σtrdr

dr
− e−σtrdv

dv

)
(29)

which is the approximation of the fluence of the vertical cylindrical beam.
The function is clearly a solution to the diffusion equation since equation (19)
is. Furthermore, given the chosen distances, zr and zv, the fluence φ(x) is zero
at the extrapolated boundary. Finally, this is inserted into approximation
(26). Applying n • ∇ to the real light source yields

(~n • ∇)
e−σtrdr(x)

dr(x)
= ~n •

(
1

dr(x)
∇e−σtrdr(x) + e−σtrdr(x)∇ 1

dr(x)

)
= ~n •

(
−σtr

(xi − zr · ~n)− x
d2
r(x)

e−σtrdr(x) − e−σtrdr(x) (xi − zr · ~n)− x
d3
r(x)

)
= −e−σtrdr(x)dr(x)σtr + 1

d3
r(x)

~n • ((xi − x)− zr · ~n)

= zre
−σtrdr(x)dr(x)σtr + 1

d3
r(x)

A similar expression can be evaluated for the virtual source. In the second
step we used ∇dr(x) = (xi−zr·~n)−x

dr(x)
and ∇ 1

dr(x)
= − (xi−zr·~n)−x

d3r(x)
. Additionally,

in the last step ~n • (xi− x) = 0 was used, which is true, when x is located at
the surface. In this case, given r = ‖x− xi‖, we can express the distances to
the real and virtual light source as

dr(r) =
√
r2 + z2

r

dv(r) =
√
r2 + z2

v

Now assuming the cylindrical beam injects radiance by the power dΦ(xi) =
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P0 we can finally evaluate approximation (26)

R(x, xi) '
D(~n • ∇φ)(x)

dΦ(xi)

=
α′

4π

(
(drσtr + 1)

zre
−σtrdr

d3
r

+ (dvσtr + 1)
zve
−σtrdv

d3
v

)
(30)

Equation (30) is not exactly the same as equation (4) in [JMLH01]. The
real term in [JMLH01] is missing a scale by zr which is clearly an error.
Furthermore, they have a division by σ′t which is not in the derived equation
here. In the more recent work by C. Donner and H. Jensen [DJ05] the scale
by zr is included and the division by σ′t has been removed.

Up until now we have assumed a semi-infinite medium. For such a case
light entering the medium will either return to the surface or be absorbed.
In the next section we will investigate the scenario for a flat medium of lim-
ited thickness known as a slab. For such a case light which has transmitted
through to the bottom of the slab may not return to the surface. Further-
more, we investigate a configuration similar to that which we have explained
in this section but using stacked slabs.

2.7 The Multipole

In this section we derive and explain the multipole model which is described
in Daniele Contini et al. [CMZ97] and also used by Craig Donner et al. [DJ05]
to model human skin in the context of computer graphics. The medium is ap-
proximated using a configuration of stacked slabs and again the reflectance
of an incident laser light is determined. Since a slab has more than one
boundary a single dipole is no longer sufficient to satisfy the condition. Fur-
thermore, diffuse radiance can transmit through to the bottom of the slab
and exit there. The reflectance and transmittance of a single slab are derived
in section 2.7.1. To determine the reflectance or transmittance of a medium
of stacked slabs it is necessary to combine profiles in a specific convolution
series. This will be explained in section 2.7.2. Finally, in section 2.7.3 we
show that the Hankel transformation can be used to transform profiles into
frequency space where we do the convolution.
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2.7.1 Reflectance of a Slab

In the following a medium of finite thickness s and planar at the top and
bottom will be known as a slab. Similar to the previous section a thin laser
beam is vertical to the medium and incident at the surface at xi. We can
consider everything above and below the slab as two semi-infinite media. Let
the upper semi-infinite medium have index of refraction µ1, the slab µ2, and
the lower semi-infinite medium µ3. Let A0 represent A(µ2

µ1
) at the top and As

represents A(µ2
µ3

) at the bottom. Since we are dealing with internal reflection
A0 and As are both evaluated with µ2 in the numerator, i.e., the slab relative
to the adjacent medium.

Now similar to section 2.6 the redistribution, after the first bounce, of
flux injected by the laser beam can be approximated by a real point source
one mean free path ` = 1

σ′t
below xi. Once again, to satisfy the extrapolated

boundary condition, the virtual light is placed at the distance `+4A0D above
the surface. However, there is a problem. The medium now has an additional
boundary which is the bottom of the slab. Given the definition of the extrap-
olated boundary condition the flux must be zero at a distance 2AsD below
the slab. To satisfy this condition the contribution of the inserted dipole
must be canceled out by mirroring the dipole about the lower extrapolated
boundary plane. Only the position of the second dipole is mirrored. The
orientation of polarity remains the same. The second dipole will satisfy the
extrapolated boundary condition below the slab but now the condition is
compromised above the slab. Subsequently, the second dipole has to be mir-
rored about the upper extrapolated boundary plane and so on forming an
infinite sum of dipoles. The configuration and the first two dipoles are shown
in figure 5.

In the following assume ~n is aligned with the Z axis in the positive di-
rection and that position xi is at origo. Mirroring about some arbitrary
coordinate kz ∈ R is done using a simple formula −(z − kz) + kz = 2kz − z.
We can reference each dipole by an index i ∈ Z such that i < 0 is a dipole
mirrored about the lower boundary at coordinate kl = −(s+2AsD) and i > 0
is a dipole mirrored about the upper boundary at coordinate ku = 2A0D.
The dipole i = 0 is the initial dipole. Let j ∈ N such that the coordinates of
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Upper extrapolated plane

Lower extrapolated plane

M1

M2

M3

virtual source

virtual source

real source

real source

Figure 5: In this figure a slab is shown, and similar to figure 4,
a dipole is used to represent the fluence such that the extrap-
olated boundary condition is satisfied above the surface. This
dipole is then mirrored by the lower extrapolated boundary
plane to satisfy the boundary condition there. This second
dipole must now be mirrored by the upper extrapolated plane
and so on.

the dipoles are determined by the following recursive formula.

zr,j = −zv,−j + 2ku

zv,j = −zr,−j + 2ku

zr,−j = −zv,j−1 + 2kl

zv,−j = −zr,j−1 + 2kl

Where zr,i and zv,i are the coordinates of the real and virtual components of
dipole i. By substituting the fourth equation into the first and the second
equation into the third we arrive at

zr,j = zr,j−1 + 2(ku − kl)
zr,−j = zr,−(j−1) − 2(ku − kl)

which are recursive formulas expressing the coordinates of the real lights
after two mirroring steps. For this reason the second equation is only true
for j > 1 as opposed to the first equation which is true for j > 0. This is
because the first mirror operation is applied about the lower extrapolated
boundary. Similar equations are true for the virtual components. Now given
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this recursive formula, of the form xj+1 = xj +k, we can rewrite the real and
virtual coordinates as

zr,i = zr,0 + i · 2(ku − kl)
zv,i = zv,0 + i · 2(ku − kl)

where zr,0 = −` and zv,0 = ` + 4A0D. These equations are true for i ∈ Z
and express the displacement of the dipole as two times the distance to the
extrapolated boundaries. By substitution we arrive at the final formulations

zr,i = −`+ i · 2(2A0D + s+ 2AsD) (31)

zv,i = `+ 4A0D + i · 2(2A0D + s+ 2AsD) (32)

These formulas are the equivalent of those in [DJ05] and [CMZ97] but negated
due to the Z-axis facing down in their work as opposed to up as it is here.
In [CMZ97] µ1 = µ3 so in their evaluation A0 = As.

In section 2.6 the location of the real and the virtual source was given as
distances zr and zv. Since they are now determined by signed coordinates
the distance to dipole i is determined by

dr,i(x) = ‖(xi + zr,i · ~n)− x‖
dv,i(x) = ‖(xi + zv,i · ~n)− x‖

Thus, as in section 2.6, by assuming x is at the surface we can sum up
contributions from 2n+ 1 dipoles which gives the following reflectance

R(‖x− xi‖) '
n∑

i=−n

α′

4π

(
(dv,iσtr + 1)

zv,ie
−σtrdv,i

d3
v,i

− (dr,iσtr + 1)
zr,ie

−σtrdr,i

d3
r,i

)
The equation approximates how much of the contribution from the laser
beam gets transferred through the medium and over to the point x at the
surface. Similarly, we can evaluate how much gets transferred to the bottom,
i.e., transmittance. If we consider x′i the equivalent location of xi but at the
bottom of the slab, s units below, then we can rewrite the distance formulas
as

d′r,i(x
′) = ‖(x′i + (zr,i + s) · ~n)− x′‖

d′v,i(x
′) = ‖(x′i + (zv,i + s) · ~n)− x′‖
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Similar to before, by assuming x′ is in the same plane as x′i, we go through
the same procedure as in section 2.6 and arrive at the transmittance

T (‖x′−x′i‖) '
n∑

i=−n

α′

4π

(
(d′r,iσtr + 1)

(zr,i + s) e−σtrd
′
r,i

d′3r,i
− (d′v,iσtr + 1)

(zv,i + s) e−σtrd
′
v,i

d′3v,i

)

The main difference is the fact that the contributions are negated because
at the bottom the inward normal is ~n and not −~n like it is at the top. This
affects equation (24) which means we need to apply (−~n •∇) instead during
evaluation.

We can simplify the distance formulas since ‖x − xi‖ = ‖x′ − x′i‖. If we
refer to this distance as r then the distance formulas for x and x′, at the
surface and bottom respectively, can be written as

dr,i(r) =
√
r2 + z2

r,i

dv,i(r) =
√
r2 + z2

v,i

d′r,i(r) =

√
r2 + (zr,i + s)2

d′v,i(r) =

√
r2 + (zv,i + s)2

which implies that R(r) and T (r) are both functions of r. It should also be
noted that this multi–dipole evaluation of R(r) is identical to the original
equation (30) when n = 0. The contributions made by the real components
are negated but this is because zr,0 = −zr since zr was defined as a distance
in section 2.6.

2.7.2 Reflectance of Layers of Slabs

Materials of higher complexity can be approximated by constructing a model
of multiple slabs stacked on top of each other. Each slab has constant scat-
tering, absorption and index of refraction values which may differ from those
of the other slabs. Reflectance and transmittance functions R(r) and T (r)
are evaluated, using these values, for each slab including those of the adja-
cent upper and lower slab. Evaluation of R(r) and T (r) for a stacked slab
is done the same way as explained in section 2.7.1 where the adjacent lay-
ers are semi-infinite. Similar to the model given in section 2.7.1, for the
case of stacked slabs, it makes sense to consider everything above the top
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slab a semi-infinite medium and also everything below the bottom slab is a
semi-infinite medium.

If T̃ (x) = T (‖x‖) then for a single slab, when incident flux at the surface
xi is known, the transmitted exitant flux at the bottom x′ can be determined

B(x′) =

∫
R2

T̃ (x− xi)I(xi)dxi

=
(
T̃ ∗ I

)
(x) (33)

by convolution of T̃ and the incident flux per unit area at the surface. The
integration is done across the surface plane of the slab R2. Note that x′ is
the point at the bottom of the slab which corresponds to x at the surface.
Assuming all layers are at least a few mean free paths in thickness we can
assume all interactions between adjacent layers occur due to multiple scat-
tering which will make the diffusion theory applicable. Subsequently, for two
consecutive slabs with transmittance profiles T1 and T2 we can evaluate the

exitant flux at the bottom of the second slab by B(x
′′
) =

(
T̃2 ∗

(
T̃1 ∗ I

))
(x).

Because convolution is associative we can convolve the transmittance profiles
prior to knowing the incident flux(

T̃2 ∗ T̃1

)
∗ I = T̃2 ∗

(
T̃1 ∗ I

)
However, T̃12 = T̃2 ∗ T̃1 does not account for the full transmittance profile
through both slabs. The reason is that diffuse radiance transmitted through
the first slab and into the second can scatter around there and then make it
back up to the surface of the second slab, which is determined by R2. Then
it might scatter around in the first slab, again, but then make it back to
the bottom which must be determined by a reflectance profile evaluated for
the bottom of the first slab. A reflectance profile for the bottom of a slab is
done simply by turning the stack of slabs upside down and then proceeding
the same way as for the surface of a slab. This presents a need to distin-
guish between reflectance at the surface R+(r) and at the bottom R−(r) of a
slab. Additionally, let T+(r) represent transmittance from surface to bottom
and T−(r) from bottom to surface. Because convolution is distributive and
since diffuse radiance can loop around between the first and second slab an
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arbitrary amount of times we can evaluate the combined transmittance as

T̃+
12 = T̃+

2 ∗
(
δ + R̃−1 ∗ R̃+

2 + R̃−1 ∗ R̃+
2 ∗ R̃−1 ∗ R̃+

2 + . . .
)
∗ T̃+

1

T̃−12 = T̃−1 ∗
(
δ + R̃+

2 ∗ R̃−1 + R̃+
2 ∗ R̃−1 ∗ R̃+

2 ∗ R̃−1 + . . .
)
∗ T̃−2

where we have used that f ∗ δ = f . For clarity the convolution sequence is
given here right to left though the terms can be refactored since convolution
is also commutative. For instance the series of convolved reflectance profiles
in T̃−12 and in T̃+

12 are really identical. Similar combined reflectance profiles
are given by

R̃+
12 = T̃−1 ∗

(
δ + R̃+

2 ∗ R̃−1 + R̃+
2 ∗ R̃−1 ∗ R̃+

2 ∗ R̃−1 + . . .
)
∗ R̃+

2 ∗ T̃+
1 + R̃+

1

R̃−12 = T̃+
2 ∗

(
δ + R̃−1 ∗ R̃+

2 + R̃−1 ∗ R̃+
2 ∗ R̃−1 ∗ R̃+

2 + . . .
)
∗ R̃−1 ∗ T̃−2 + R̃−2

The reflectance and transmittance profile of stacks with more than two slabs
can be determined by iteratively combining current profiles with those of the
next slab in the stack. The combined reflectance profile of a stack is, unlike
the reflectance profile of a semi-infinite medium (see equation (30)), not a
simple analytical function. For this reason [DJ05] does a discrete frequency
space evaluation which will be covered in the next section.

2.7.3 Combining Reflectance Profiles

The reflectance and transmittance profiles derived in section 2.7.2, for a stack
of slabs, are comprehensive convolution sequences. Because of this Craig
Donner [DJ05] decides to use the classic convolution theorem which states
that

F{f ∗ g} = k · F{f} · F{g}

where F{f} denotes the Fourier transform of f and k depends on the chosen
normalization of the Fourier transform. For some chosen disk size d > 0 the
Fourier transformed profiles are given by

R(u, v) = F{R̃} =

∫
x2+y2<d2

R̃(x, y)e−2πi(ux+vy)dxdy

T (u, v) = F{T̃} =

∫
x2+y2<d2

T̃ (x, y)e−2πi(ux+vy)dxdy
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In the typical continuous case d = ∞ but to do numerical evaluation it is
assumed that values of significant contribution are within a finite domain.
For this reason we denote the upper limit by d which is more general. It
follows that, in frequency space, the convolution sequences of the combined
profiles is evaluated using

R+
12 = T −1 ·

(
1 +R+

2R−1 +
(
R+

2R−1
)2

+
(
R+

2R−1
)3

+ . . .
)
· R+

2 · T +
1 +R+

1

R−12 = T +
2 ·
(

1 +R−1R+
2 +

(
R−1R+

2

)2
+
(
R−1R+

2

)3
+ . . .

)
· R−1 · T −2 +R−2

T +
12 = T +

2 ·
(

1 +R−1R+
2 +

(
R−1R+

2

)2
+
(
R−1R+

2

)3
+ . . .

)
· T +

1

T −12 = T −1 ·
(

1 +R+
2R−1 +

(
R+

2R−1
)2

+
(
R+

2R−1
)3

+ . . .
)
· T −2

It is pointed out in [DJ05] that when |R+
2R−1 | < 1 the geometric series can

be simplified.

1

1−R+
2R−1

= 1 +R+
2R−1 +

(
R+

2R−1
)2

+
(
R+

2R−1
)3

+ . . .

Donner uses the discrete fast Fourier transform FFT in [DJ05] to create
samples of the combined profiles. In a more recent paper [DJ06a] by Donner
the transformation is done using the Hankel transform which will be shown
in the following. The Hankel transform H{f} of order zero is defined by

F0(k) =

∫ ∞
0

f(r)J0(k · r)rdr (34)

where f is a function of a single variable and J0(x) is the Bessel function
of order zero. The Bessel functions (of the first kind) of order n can be
expressed as the integral

Jn(z) =
1

2πin

∫ 2π

0

eizcosθeinθdθ

From this it follows that J0(x), for x ∈ R, is equal to

J0(x) =
1

2π

∫ 2π

0

eixcosθdθ

=
1

2π

∫ 2π

0

e−ixcosθdθ (35)
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where the last step follows because the imaginary component of the result is
zero and because J0(x) is an even function on the real domain. Now, given
the following definitions

x = r cos θ y = r sin θ r =
√
x2 + y2

u = q cosφ v = q sinφ q =
√
u2 + v2

we can rewrite the Fourier transformed reflectance profile

F{R̃} =

∫
x2+y2<d2

R̃(x, y)e−2πi(ux+vy)dxdy

=

∫ 2π

0

∫ d

0

R(r)e−2πiqr cos(θ−φ)rdrdθ

=

∫ d

0

∫ 2π−φ

0−φ
R(r)re−2πiqr cos θdθdr

=

∫ d

0

R(r)

∫ 2π

0

e−i2πqr cos θdθrdr

= 2π

∫ d

0

R(r)J0(2πqr)rdr

The resulting version of the Fourier transform of a radially symmetric func-
tion already appears to be very similar to the Hankel transform (see equation
(34)). The conversion from Fourier to Hankel transform can be completed
using substitution with r′ = 2πr and dr′ = 2πdr. If we additionally define
the function g(r′) = r′

2π
we arrive at the result

F{R̃} =
1

2π

∫ 2πd

0

R

(
r′

2π

)
J0 (qr′) r′dr′

=
1

2π

∫ 2πd

0

(R ◦ g) (r′) J0 (qr′) r′dr′

=
H{R ◦ g}

2π
(36)

In other words, the Fourier transformed reflectance profile R̃ is equal to the
Hankel transformation of R( r

′

2π
) divided by 2π. The same principle applies

to the transmittance T̃ since it is also a radially symmetric function. Note
that if the Fourier transformation is done over the domain with disc size
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d then the corresponding Hankel transformation is done with a domain of
disc size 2πd. This is a result of the substitution step which is significant
for d < ∞. Another useful consequence of equation (36) is that the Fourier
transformation of a real radially symmetric function is again a real radially
symmetric function.

2.8 Resulting Profiles

In this section, reflectance profiles generated using the dipole– and multipole
methods are tested and compared to evaluation of similar profiles done using
Monte Carlo simulation. The software used for this simulation is called
(MCML) Monte Carlo for Multi-Layered media and was written by Lihong
Wang and Steven L. Jacques [WJ]. The software allows the user to configure
a model of stacked slabs by thickness, refractive index and scattering- and
absorption coefficients for each slab. The simulation evaluates reflectance
and transmittance profiles based on an infinitely narrow, vertically incident,
photon beam as the light source. We have configured MCML to use 1000000
photons for its evaluation. The multipole model approximates the same
configuration but will only take reflectance due to multiple scattering into
account. At the point xi, where the beam is incident at the surface, first and
second order scattering will dominate results and subsequently the multipole
(and dipole) model is predicted to produce results less than that of MCML
close to the center. All results in the following are given in millimeters.

Slab
σa σ′s µ thickness

R G B R G B
skin 0.032 0.17 0.48 0.74 0.88 1.01 1.3 ∞

Table 1: This table contains, for a skin sample, the
absorption– and reduced scattering parameter reported in
[JMLH01].

In [JMLH01] measurements of σa and σ′s are made for various materials
such as: ketchup, chicken, milk, skin, etc. This is done by focusing a vertical
beam of white light on the surface of a sample. An HDR picture is taken
to record the radiant exitance across the surface resulting from the beam of
light. The reduction in radiance caused by transmittance in and out, see eq.
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(28), through the interface is canceled out in [JMLH01] by exploiting the fixed
constellation of the camera. Jensen is using the dipole approximation and
subsequently equation (30) is used in a least-squares fit to reverse the best
match for σa and σ′s. To further stabilize results Jensen computes the total
diffuse reflectance Rtot from the picture and then uses this as an additional
constraint during fitting.

Rtot =

∫
R2

R(‖xi − x‖)dx (37)

Results for fitting of two skin samples are given in [JMLH01]. Table 1
in this paper is the reported result of the first skin sample. A comparison
between evaluation made by MCML and equation (30), with a logarithmic
distribution along the Y -axis, is shown in figure 7(a). The dipole approxima-
tion, in this case, appears to agree very well with MCML and as predicted
equation (30) underestimates reflectance close to xi. Figure 7(b) shows a
close-up of a linear distribution along the Y -axis and though the graphs
do not align exactly there is a distinct conceptual match. This match is
further improved as the distance from the center is increased. Ultimately,
the diffuse BSSRDF, Sd, is to be used in equation (4). To get a clearer
picture of where the most significant contributions, due to subsurface scat-
tering, are received from (or passed on to) we need to take into account
that contributions are weighted by a differential surface area. Given that∫
R2 R(‖xi − x‖)dx = 2π

∫∞
0
R(r)rdr it makes sense to take a look at rR(r)

which is shown in figure 6(a). The graph shows a peak near the center but
at the actual center contributions due to multiple scattering are negligible.
Furthermore, the graph reveals that reflectance values for green and blue
tend to zero faster than those of red. This agrees very well with the profile of
Caucasian skin which tends to exhibit red tones within darker regions such
as wrinkles and shadows.

In [DJ05] the idea of modeling human skin with a semi-infinite medium is
challenged. In optics skin is modeled as multiple layers with different material
properties. A typical model, see [Tuc00], divides the skin into two primary
layers. The first is the epidermis and the second is the dermis. In [DJ05] the
dermis is further divided into two separate layers the upper dermis and the
bloody dermis. The values used in [DJ05] are given here in table 2. Further-
more, the combined reflectance profile is now evaluated using the multipole
method explained in section 2.7. As in [DJ06a] the Hankel transformation of
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Slab
σa σs µ g thickness

R G B R G B
epidermis 2.1 2.1 5.0 48.0 60.0 65.0 1.4 0.0 0.03

upper dermis 0.16 0.19 0.3 32.0 40.0 46.0 1.34 0.25 0.05
bloody dermis 0.085 1.0 25.0 4.5 4.7 4.8 1.4 0.8 ∞

Table 2: This table contains the material properties for the
multi–slab model of human skin used in [DJ05].

order zero is used to transform reflectance and transmittance profiles of in-
dividual slabs into frequency space before convolution. This transformation
step is performed using equation (36). Specifically, for the implementation
used in this paper discrete transformation is done using GSL – The GNU
Scientific Library.

The table values are also fed to MCML and a comparison between the
two resulting reflectance profiles is shown in figure 7(c) with a logarithmic
distribution along the Y -axis. Again there appears to be a really good cor-
respondence between the Monte Carlo simulation and that of the (multi)
dipole approximation. For the case of a linear distribution along the Y -axis,
in figure 7(d), there is still a close match between that of MCML and the mul-
tipole method. Unfortunately, when switching to 6(b), which shows rR(r),
a problem is revealed. Reflectance, due to multi scattering, is focused at the
center to an extent which makes all other contributions across the surface
insignificant. Specifically, 99% of the total diffuse reflectance is spent within
the range r ∈ [0; 0.01]. In other words the resulting profile is similar to that
of a BRDF which does not take subsurface scattering into account. In [DJ05]
the values in table 2 are credited directly to the work of Valery Tuchin and a
reference is made to the book [Tuc00]. Since a BRDF like behavior is clearly
an incorrect profile for skin we have since then acquired a copy of [Tuc00].
We were not able to find table 2 in this book so we made contact with Craig
Donner who confirmed the values are in fact only based on the tables of
[Tuc00] and were reworked and adapted during development of their paper.
There is no plot for the reflectance profile shown in [DJ05]. For this reason
we tried to compare results to a different example by Craig Donner given
in [DJ06a]. The example consists of two slabs and material parameters are
given in figure 4a in [DJ06a]. The same parameters are given here in table 3
and graphs for logarithmic and linear distribution along the Y -axis are given
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Slab σa σ′s µ thickness
first slab 0.005 1.3 1.4 6.0

second slab 0.01 1.0 1.4 ∞

Table 3: This table contains the material properties of two
slabs used to generate fig 4a in [DJ06a].

(a) dipole (b) skin - DJ05

Figure 6: In figures 6(a) and 6(b) we see the reflectance mul-
tiplied by the distance rR(r). These were made from tables
1 and 2 respectively.

in figures 7(e) and 7(f) respectively. Once again results between MCML and
the multipole method agree very well. Additionally, this time the graph given
in [DJ06a] in figure 4a agrees with the result produced here.

Alas, this example is not that of a skin profile. Since the reflectance
profile produced by our multipole implementation matched that of MCML
a possibility is that the table, as printed in the paper [DJ05], could contain
errors. Though the epidermis and upper dermis in table 2 are thin a possible
issue is the specified absorption and scattering parameters are large relative
to those given in [JMLH01]. Both papers define values relative to units in
millimeters. Large values will increase the effective transport coefficient σtr
(given in section 2.4.2). A large coefficient for σtr will force reflectance and
transmittance to rapidly decline with distance (see eq. (30)). Regardless, we
have decided to abandon table 3 in [DJ05].
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(a) dipole logarithmic (b) dipole linear

(c) skin – multipole logarithmic (d) skin – multipole linear

(e) multipole logarithmic (f) multipole linear

Figure 7: In figures 7(a), 7(c) and 7(e) we see the reflectance
profiles resulting from tables 1, 2 and 3 respectively. These
are presented with a logarithmic distribution along the Y -
axis. The same profiles are shown with a linear distribution
in figures 7(b), 7(d) and 7(f).
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3 The Integration Step

In section 2 we focused on the reflectance profile. Once such a profile is
obtained it must be used in equation (4), during rendering, to determine
outgoing radiance. To do this we must numerically compute an integration
step across the scene. The reflectance profile is derived based on the as-
sumption that the medium consists of a configuration of stacked slabs which
implies an entirely flat surface. An arbitrary scene to be rendered is gen-
erally not flat but for the process to remain practical this is ignored during
integration in [JMLH01] and [DJ05].

Another significant subtlety is the reflectance profile was derived based
on the assumption that sources are isotropic. However, this assumption
was only applied to the initial internal scattering event which redistributes
transmitted irradiance. Subsequently, we can use the reflectance profile with
any type of light including area light sources.

In this section we will focus on different approaches to solving the inte-
gration. First we give the final simplified version of equation (4) which is
obtained by inserting the derived transfer function. Next since integration
across the entire scene, for every pixel, is ineffective integration is restricted
to a finite range. These details are discussed in section 3.1.

The integration step is further simplified by exploiting that the derivative
of the reflectance profile (and the fall-off) tends to zero. This is done by using
an octree of sample points to integrate at a lower resolution as distance
becomes greater. This approach was introduced by Jensen et al. [JB02] and
is described here in section 3.2.

A more recent approach by Eugene d’Eon et al. [dL07] completes the
integration step on a GPU at an interactive framerate. This is done by
assuming the reflectance profile is given as a sum of Gaussians, which are
separable, and by performing the integration in a 2D texture unwrap. We
describe their method here in section 3.4. and suggest an improvement to
stabilize results near the boarder of the unwrap.

3.1 Preliminaries

By substituting (28) into (6) we arrive at the final BSSRDF

S(xi, ~ωi, xo, ~ωo) '
1

π
ρt(xo, ~ωo)R(‖xo − xi‖)ρt(xi, ~ωi) + Sr(xo, ~ωi, ~ωo) (38)
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where R(‖x‖) is the previously, assumed to be, radially symmetric reflectance
profile. If we assume the second term is defined as,

Sr(xo, ~ωi, ~ωo) = δ(‖xo − xi‖) · fr(xo, ~ωi, ~ωo)

where fr is some chosen BRDF, then by substituting (38) into equation (4)
we get the following approximation

Lo(xo, ~ωo) '
ρt(xo, ~ωo)

π

∫
S

R(‖xo − xi‖)
∫

Ω2π

ρt(xi, ~ωi)L(xi, ~ωi)(~ωi • ~ni)d~ωidxi +∫
Ω2π

fr(xo, ~ωi, ~ωo)L(xi, ~ωi)(~ωi • ~ni)d~ωi (39)

Preferably, fr should be the same BRDF as that which is used in equations
(7) and (8) for diffuse reflectance and transmittance.

It is now clear that the inner integral of the first term of equation (39)
collects the total transmitted irradiance at every point xi. This is the flux per
area unit transmitted through the interface. Next the outer integral weights
every such contribution using the reflectance profile which converts incom-
ing differential flux into outgoing. The division by π converts the radiosity
into diffuse outgoing radiance and finally the result is transmitted back out
through the interface at xo in the direction ~ωo.

Integrating across the entire scene for every visible point xo is not a re-
alistic option. However, the reflectance profile, R(‖x‖), is a monotonically
decreasing function and is subject to exponential decay. This is given by
equation (30) for the dipole approximation and in section 2.7.1 for the mul-
tipole. Furthermore, the decay constant is given by the transport coefficient
σtr which was defined in section 2.4.2.

When using the dipole approximation the reflectance function is analyt-
ical and a practical approach to determining the effective integration range
dmax is choosing this range such that

2π

Rtot

∫ dmax

0

R(r)rdr = 1− ε

for some chosen ε. Note that the left side of this equation is the ratio between
the diffuse reflectance within a radius of dmax and the total diffuse reflectance.
This ratio is in the range zero to one which means 0 < ε < 1. We have used
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Maple 12 to solve the integral. After substitution of dmax by s and isolating
ε we are given this equation.

ε(s) =
zrdv(s)e

−σtrdr(s) + zvdr(s)e
−σtrdv(s)

dr(s)dv(s) (e−σtrzv + e−σtrzr)
(40)

What we need is the inverse function which does not have an analytical
solution. However, the function is monotonically decreasing so for any choice
of s ∈]0;∞[ there is a unique ε ∈]0; 1[ and vice versa. Thus we can determine
s from a user–defined error ε0 in Maple using fsolve(ε0 = ε(s)). This is
equivalent to finding the root of the function g(s) = ε0 − ε(s) which can be
done using an algorithm such as the Newton–Raphson method or the Secant
method.

For a discrete reflectance profile it is possible to search for dmax by it-
eratively generating the table for R(r) over a range which is increased by
some delta per iteration. The search for dmax is terminated once a certain
amount of iterations have been performed or once the changes to dmax have
become insignificant. Note that the reflectance profile is generated only once
per material. The range dmax on the other hand can be used during evalu-
ation of equation (39) to reduce the execution time significantly. Instead of
integrating across the entire scene per xo we only have to integrate over the
intersection S between all surfaces of the scene and a ball at xo with radius
dmax.

The reflectance profile is generated under the assumption that the medium
has a planar surface. This limitation is removed in both [JMLH01] and [DJ05]
by simply passing the distance r = ‖xo − xi‖ to R(r) regardless of orienta-
tion relative to the surface normal at xo. This solution is technically incorrect
but preserves practicality of the approach. Conceptually, the reflectance is
reduced at an exponential speed, by distance to the source, whether the
surface is exactly planar or not. For a thin medium, such as paper, it is
suggested in [DJ05] to use a simple remedy such as

t =
1− (~ni • ~no)

2
P (r) = (1− t)R(r) + tT (r)

where P (r) is a blend between the transmittance and reflectance based on
the angle between the surface normals at xi and xo. The combined profile
P (r) is subsequently used instead of R(r) in equation (39).
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Equation (39) can generally not be solved analytically. Some form of
discretization needs to take place followed by numerical integration. In the
following different ways to complete this task will be described.

3.2 Two-pass integration

Adjacent pixels often represent points on a surface within a close proximity
of one another. Specifically, a point, xo on a surface to be shaded is very
likely to be within dmax distance of other points to be shaded. The potential
of a frequent, and significant, overlap between points to be shaded motivates
the idea of caching results for the inner integral in equation (39). This is
done for a chosen distribution of N sample points. Once this is done the
outer integral can be evaluated in a subsequent pass. To evaluate the outer
integral the differential area at the surface associated with each sample point
xi must be known. If the sample points have a reasonably even distribution
then this differential area is trivially

dxi =
Atot
N

where Atot is the total surface area of a mesh and N is the number of sample
points distributed across the mesh. If the distribution of sample points is not
even then it is possible to determine dxi using a Voronoi diagram. However,
this also makes the procedure more complicated.

The two-pass approach is used by [JB02] to accelerate the integration.
In the first pass sample points are evenly distributed using Turk’s point
repulsion algorithm [Tur92]. Let triangle j ∈ N be denoted Tj and let the
area of this triangle be known as Aj. For a total budget of N sample points
the algorithm works the following way

1. Randomly assign each sample point to a triangle, Tj, such that the

probability of choosing Tj is P (xi ∈ Tj) =
Aj
Atot

.

2. Randomly position each point xi assigned to Tj inside the triangle.

3. Refine results by applying repulsion between all points distributed
across the mesh.

The first step is achieved by creating a random positive number in the range
[0;Atot] and then by doing a binary search through a list of partial sums
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of the triangle areas in the model. The second step requires the ability to
generate evenly distributed points inside a triangle. This can be achieved
using the following equations also given by Turk in Graphics Gems [Tur93]

u = 1−
√
ξ1

v = ξ2 ·
√
ξ1

prnd = (1− u− v) · p0 + u · p1 + v · p2

where ξ1, ξ2 ∈ [0; 1] are two randomly generated numbers and p0, p1 and
p2 are the three vertices of the triangle. In the final step the distribution
of sample points is refined using relaxation by repelling neighboring points.
Turk lets the radius of repulsion be given by r = 2

√
dxi. Two points which

have a distance of r or more between them do not affect each other. The
repulsion force is chosen by Turk such that it increases linearly as distance
decreases below r. For more information about the repulsion algorithm the
reader is referred to [Tur92].

The choice of the number of sample points, N , is made in [JB02] based
on the mean free path `. Since this is the average distance until the next
interaction inside the medium it makes sense to consider this the maximum
distance any point should have to its closest neighbor. Subsequently, the
number of samples is chosen as

N =
Atot
π`2

where the denominator is the area of a small disk with radius `. This can
be thought of as the differential area dxi. For every resulting sampling point
the transmitted irradiance

I(xi) =

∫
Ω2π

ρt(xi, ~ωi)L(xi, ~ωi)(~ωi • ~ni)d~ωi

determined by the inner integral, in equation (39), is stored along with the
position of the sampling point. If a nonuniform distribution is used then the
differential area dxi must be stored too.

In the second pass when the outer integral is processed for a pixel, cor-
responding to some point xo on a surface, all sample points, xi, within a
distance of dmax are collected. The transmitted irradiance of each sample is
scaled by R(‖xo−xi‖)dxi and accumulated. Once all contributions have been

46



accumulated the final result is scaled by ρt(xo,~ωo)
π

. To accelerate the process
of collecting all sample points within the proper range it is appropriate to
use a hierarchical structure. In [JB02] an octree is used with up to eight
samples in a leaf node to make the implementation more efficient. However,
collecting all sample points within a distance of dmax, even with the octree, is
still a costly process. For this reason Jensen takes advantage of the fact that
the reflectance profile is essentially made up of a reciprocal exponential curve
e−kx. In other words, as x increases, change in reflectance value slows down
exponentially. In fact values tend to zero. From this we can conclude as dis-
tance to xo increases we can approximate by applying the same reflectance
value to a wider range of sample points. This allows us to preaccumulate the
transmitted irradiance weighted by the differential area for all sample points
within the boundary of a node. This represents the accumulated radiant flux
contained within node k ∈ N and we shall denote this quantity

Φk =

Nk∑
i=1

I(xi)dxi

where Nk is the number of sample points within the boundary. Thus for
some appropriately chosen center Pk relative to the Nk sample points we can
approximate the outer integral using

R(‖xo − Pk‖) · Φk '
Nk∑
i=1

R(‖xo − xi‖) · I(xi)dxi (41)

The center Pk can be chosen in a number of different ways. One option is to
determine the smallest possible bounding sphere for the Nk sample points.
Another is to simply average the sample points and a third option is to
crudely use the center of the node itself. In [JB02] yet another option is
chosen where the center is a weighted average of the sample points

Pk =

∑Nk
i=1 xiI(xi)∑Nk
i=1 I(xi)

where weights are determined by the transmitted irradiance. In other words
Pk is chosen such that it is closer to the brightest contributions.

The process of evaluating the outer integral now becomes recursive. The
octree is traversed from the top node and for every node visited we check
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if it is small enough relative to its distance to xo. If so we settle with the
evaluation provided by approximation (41) and if not the child nodes are
evaluated recursively. If it is a leaf node then the exact accumulation given
on the right side of approximation (41) is performed. In [JB02] a simple
criteria is used to determine whether or not to recurse. Let the value dk ∈ R
represent the chosen size of node k. If the ratio between this size and the
distance is less than some user–defined value ε then recursion is ended and
the node is evaluated using approximation (41).

dk
‖xo − Pk‖

< ε (42)

A logical option when determining a suitable value for dk is the radius of
a minimum bounding sphere containing the Nk sample points. However, in
[JB02] another simple evaluation is used based on the total area sum of all
differential areas. This way it is taken into account how large a surface area
the sample points represent.

Ak =

Nk∑
i=1

dxi

dk =
√
Ak

In [JB02] this is justified by how Ak
‖xo−Pk‖2

< ε2 represents a limit on the
approximate solid angle containing the surface area within the node. Either
way, whether or not, to recurse is determined by (42). To summarize, the
values stored with every node are Φk, Ak, Pk and dk and for leaf nodes
up to eight sample points are stored including differential areas dxi when a
nonuniform distribution is used.

3.3 Mesh Unwrap–Based Distribution

For a mesh supplied with a mesh unwrap it is possible to distribute samples
according to the unwrap. This is done by resolving for every used texel in the
texture map the corresponding surface position(s). If the unwrap is generated
such that it is approximately conformal to the surface of the mesh then the
samples can be considered evenly distributed. Generally, this is not the case
and dxi will have to be evaluated for each sample point. For a triangular
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mesh it is shown in [Mik08] how a triangle given as a parametrization σ(s, t)
of the texture map sampling coordinate (s, t) has first order derivatives

σs =
(t3 − t1)y · (p2 − p1)− (t2 − t1)y · (p3 − p1)

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x
(43)

σt =
− (t3 − t1)x · (p2 − p1) + (t2 − t1)x · (p3 − p1)

(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x
(44)

where p1, p2 and p3 are the vertices of the triangle and t1, t2 and t3 are the
texture coordinates of the unwrap assigned to the triangle. The absolute
value of the denominator is actually equal to two times the area, in the
texture, spanned by the texture coordinates

Amap =
∣∣det

[
t2 − t1 t3 − t1

]∣∣
=

∣∣∣(t2 − t1)x · (t3 − t1)y − (t2 − t1)y · (t3 − t1)x

∣∣∣
The alignment of σs and σt shows how horizontal and vertical lines, in the
texture, map to the surface and the magnitudes ‖σs‖ and ‖σt‖ are equal to
units traveled across the surface per unit in the texture in the corresponding
direction. We can determine two times the area of the triangle as Atri =
‖ (p2 − p1) × (p3 − p1) ‖ and from this it follows that we can determine the
surface to texture ratio as

dxi = ‖σs × σt‖

=
Atri
Amap

which is the differential area dxi associated with the sample point xi. Note
however that every texel may belong to more than one triangle. A practical
way to distribute sample points is to rasterize in 2D each triangle by its
texture coordinates and interpolate the 3D positions of the triangle. Thus the
interpolated position becomes the sample point on the mesh and ambiguity
is solved.

3.4 Mesh Unwrap–Based Integration

As opposed to distributing samples across the actual surface of the mesh one
might approximate by performing the integration based on distances between
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texels and thus completing the integration in the two dimensional unwrap.
This assumes connectivity of the unwrap is roughly equivalent to that of the
triangular mesh. In other words such that adjacent triangles of the mesh are
generally adjacent in the unwrap. The technique was introduced in [BL03]
to render faces in the Matrix sequels. The method is done in two primary
passes.

1. Render irradiance to a texture map.

2. Convolve against the reflection profile

The first pass is done in a similar way to that of the previous section. We
rasterize in 2D each triangle by its texture coordinates and interpolate at-
tributes such as the 3D positions and normals of the triangle. This way we
determine the surface position and normal associated with each used texel
from the interpolated attributes. Next the inner integral in equation (39) is
evaluated and the resulting transmitted irradiance is stored in the texture.
Unlike the previous section each texel must map uniquely to one surface
point. Thus overlaps in the unwrap, such as mirroring, are prohibited. This
is because irradiance is determined from the position (and the normal) and
not the location of the texel.

In the second pass, to complete the outer integration, the irradiance tex-
ture is convolved with the reflectance profile. The dipole approximation is
based on a reciprocal exponential curve and the multipole is based on a
summation of these. This typically gives an initial spike followed by a slow
fall-off which results in a broad base. As pointed out in [BL03] the broad
base provides a wide blur while the spike preserves the original detail. Thus
in their paper a conceptual approximation is used based on

Rk(r) '
1

(c+ r)k
(45)

which also gives a spike and a broad base. In this approximation c is some
small constant used to avoid division by zero at r = 0 and k is a tweakable
user–defined parameter used to control the behavior of the reflectance profile.
A comparison between the physically based dipole approximation given in
[JMLH01] and the more adhoc approach in [BL03] is shown in figure 8. No
specific choices for k were given in [BL03] for red, green and blue so I have
simply chosen values which give profiles reminiscent of those in figure 8(a).
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(a) dipole - HJ01 (b) matrix - BK03

Figure 8: The dipole approximation for skin given in
[JMLH01] is shown in figure 8(a). A different empirical ap-
proach given in [BL03] is shown in figure 8(b). Though they
are numerically different they are conceptually similar. Both
have a spike and a broad base.

The resemblance is more striking when compared to the close–up of figure
8(a) shown in figure 7(b).

Given that the method determines reflectance based on distances between
texels in the irradiance texture it strictly works for local subsurface scatter-
ing. The technique is not able to transmit irradiance through thin layers
such as the ears and nostrils. This is because the distance in texels would
represent the distance along the surface of the ear/nostril from one side to
the other as opposed to the distance through the medium which is much less.
This is a limitation also pointed out by the authors themselves. Additional
problems which were not addressed in [BL03] are issues such as the fact that
approximation (45) is not separable which may lead to a very significant
performance hit when convolution is performed. Another problem is what to
do about unused texels in the irradiance texture? What to do when locality
at the surface does not correspond to locality within the unwrap? And ulti-
mately how to convert from a distance in texels to the corresponding distance
across the surface of the mesh.

The more recent work of Eugene d’Eon et al. [dL07] adapts the work of
[BL03] to a more GPU friendly implementation and furthermore addresses all
of these problems. As opposed to using approximation (45) a weighted sum of
Gaussians is used instead to represent the reflectance profile. The rationale
for using multiple Gaussians is that a single Gaussian is not sufficient to
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σ2 Blur Weights
Red Green Blue

0.0064 0.233 0.455 0.649
0.0484 0.1 0.336 0.344
0.187 0.118 0.198 0
0.567 0.113 0.007 0.007
1.99 0.358 0.004 0
7.41 0.078 0 0

Table 4: These are the weights and the variance σ2 values,
given in [dL07], for the sum of Gaussians used to approximate
the reflectance profile of a Caucasian male.

represent the spike and broad base of the reflectance profile.
The two–dimensional Gaussian is given as

G
(
σ2, r

)
=

1

2πσ2
e
−r2
2σ2

and for a fixed number n of Gaussians, and for a known reflectance profile
R(r), variance σ2

k and weights wk are chosen such that the squared error is
minimized ∫ ∞

0

r ·

(
R(r)−

n∑
k=0

wkG
(
σ2
k, r
))2

dr

In [dL07] a table of values are given such that they represent the reflectance
profile of a Caucasian male. According to Eugene d’Eon the values in the
table were made using an already made image and a similar image rendered
by Eugene himself using a BRDF (no subsurface scattering). From these
two images the best match for the weights are reversed. Currently, no public
documentation exists on the explicit details of this work. The resulting values
are given in [dL07] and also here in table 4. The exact graph when using this
table in the sum of six Gaussians is shown in figure 9.

Unlike approximation (45) the sum of Gaussians profile is based on a re-
ciprocal exponential function similar to the multipole (and dipole) technique.
The difference is the squared distance r2 is used directly as opposed to the
distance formulas dr,i(r) and dv,i(r) given in section 2.7.1. The significant
difference is that Gaussians are separable which allows for a very efficient
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(a) R(r) (b) R(r) · r

Figure 9: In figure 9(a) we see the reflectance profile used in
[dL07] and in figure 9(b) we see the equivalent but multiplied
by the distance rR(r).

two-pass implementation. Let f : R2 → R then

F (u, v) = G ∗ f

=

∫ ∞
−∞

∫ ∞
−∞

1

2πσ2
e
−(x2+y2)

2σ2 f(u− x, v − y)dxdy

=
1

2πσ2

∫ ∞
−∞

e
−y2

2σ2

(∫ ∞
−∞

e
−x2
2σ2 f(u− x, v − y)dx

)
dy

First horizontal convolution is performed and then vertical or vice versa.
Thus six blurred irradiance textures are created from the original irradiance
map using the Gaussians given by table 4. To further accelerate convolu-
tion the property that the convolution of two Gaussians results in a wider
Gaussian is used

G
(
σ2

1, r
)
∗G

(
σ2

2, r
)

= G
(
σ2

1 + σ2
2, r
)

Initially, convolution is done by the narrowest Gaussian and then the process
iteratively blurs the current already blurred irradiance texture. This is done
such that results, at every iteration, are equal to convolution of the original
texture by the subsequent wider Gaussian kernel.

The full accelerated algorithm, to achieve subsurface scattering, is out-
lined by the steps given here

1. Render shadow maps.
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2. Render off-screen irradiance texture.

3. For each of the six Gaussian kernels

(a) Perform a horizontal blur pass.

(b) Perform a vertical blur pass.

4. Render mesh in 3D

(a) Sample each of the six convolved irradiance maps and combine
linearly using the weights of table 4.

(b) Add reflected radiance (specular) for each light source.

The Gaussian kernels are defined relative to the surface of the mesh in
millimeters. A simple way to resolve the surface to texel ratio is to use
equations (43) and (44) since the magnitudes represent the amount of units
at the surface per unit in the texture for the horizontal and vertical directions,
respectively, in the texture. This tells us that 1

‖σs‖ represents units in the
texture per unit in direction σs at the surface and similar for σt. Another
possible way to resolve the same ratios is to use the ddx, ddy pixel shader
instructions. These allow you to compute derivatives, with respect to pixel
units, directly in a pixel shader. Either way, the so called stretch texture
is precomputed and used during the third step to distribute samples in the
irradiance texture to perform convolution. In [dL07] the fixed number of
seven samples is used for each convolution pass. This is the case for both the
horizontal and for the vertical direction.

Additional problems in regards to performing the integration in 2D using
the unwrap are: texels which are not covered by the unwrap and also that
connected regions at the surface of the mesh can be disconnected in the
unwrap. A possible solution given in [dL07] is to use an alpha mask to
mark all texels used by the skin. This alpha mask is pre–blurred and used
to linearly interpolate between a standard local light evaluation and the
subsurface scattered result. However, this creates hard, dry–looking skin,
near the boarder of the unwrap. Admittedly, the solution is not a good one
and for this reason the results presented in [dL07] were done using a mesh
with an unwrap which covers the entire irradiance texture map. This way
any sampling done, during convolution, outside the unwrap (and the texture)
will be clamped to the nearest valid irradiance sample. However, this can
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only be considered an approximation since two triangles which are adjacent
at the surface may be disconnected in the unwrap. Thus the correct place to
continue sampling may be in an entirely different location in the irradiance
texture. Nevertheless, in order to achieve better performance and simplicity,
clamping to the boarder is a reasonable approximation for such an unwrap
covering the entire texture.

We suggest a different strategy, which is more general, to solve the prob-
lem. A better solution is to dilate the initial irradiance texture before con-
volution. This process copies at every unused pixel the value of the closest
valid pixel, i.e., pixels within the unwrap. However, this process is expensive
but fortunately, since the unwrap is known prior to rendering, offsets to the
closest valid pixel can be determined using a preprocess. With pregenerated
offsets runtime dilation of the irradiance texture is trivially done in a single
pass. Furthermore, by pregenerating the offsets it is even possible to take into
account when triangles which are connected at the surface are disconnected
in the unwrap. An unused pixel just outside the boarder of the unwrap can
be assigned an offset to a pixel which belongs to the, at the surface, adjacent
triangle. However, this will also complicate the preprocess step and does
require more analysis which is beyond the scope of this paper. Nevertheless,
a preprocess of the offsets, of a standard dilation method, is a simple and
sensible solution for unwraps which do not cover the entire texture.

It was mentioned in the beginning of this section that solving the outer
integration based on distances between texels only works with local subsur-
face scattering. This is because distances in the unwrap represent the length
of a corresponding path, over the surface, between points. The transmit-
ted distance through the medium, however, may be significantly shorter. In
[dL07] this is referred to as global subsurface scattering.

Assuming a point light, let xo be some occluded surface point and let xi
be the occluding surface point. The point xi can be resolved by sampling the
depth of the shadow map using xo as input. This way it is possible during
shading to resolve the depth of transmittance d = ‖xo − xi‖. Using the
convolved irradiance textures local subsurface scattering can be determined
at both xo and xi. To maintain practicality, of unwrap–based integration, a
method is needed to convert the already integrated local subsurface scattering
at xi into transmitted light at xo. To achieve this the choice is made in
[dL07] to approximate by determining the transmitted light for the point x′

instead of xo directly. As shown in figure 10 this is the point, at the bottom,
immediately below xi. Thus the transmitted distance is corrected using scalar
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projection onto the surface normal at xi which gives d = (~ni • ~ωi) · ‖xo−xi‖.
Here we have used that the unit direction from xo to xi is the direction
towards the light ~ωi.

 medium

xi

xox’

r
d

source

θ

Figure 10: In this constellation xo is occluded by xi as seen
from the light source. To determine approximately how much
light is sent from xi, through the medium, and to xo the ap-
proximation is made to determine this at x′ as opposed to
xo. This will allow us to solve the integration using the al-
ready convolved irradiance textures made for local subsurface
scattering.

Let r represent the parameter for the local distance between xi and sur-
rounding sample points used during convolution. Conceptually, the distance
from x′ to the sample points, which surround xi, is given by r′ =

√
r2 + d2.

By exploiting the squaring of r, in the Gaussian, the dependency on the
transmitted distance d is factored out

R(r′) =
6∑

k=1

wkG(σ2
k,
√
r2 + d2)

=
6∑

k=1

(
e
−d2

2σ2
k wk

)
G(σ2

k, r)

This allows us to reuse the six irradiance textures by sampling these at the
texel location which corresponds to xi. As we see the weights wk used to sum

up these contributions are scaled by e
−d2

2σ2
k which will penalize, the contribu-

tion, as d increases. Furthermore, narrow Gaussians are penalized harder
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than the subsequent wider Gaussians. Because of this the choice is made, in
[dL07], to only sample the last three convolved irradiance textures to deter-
mine global subsurface scattering.

A significant disadvantage to this solution, to account for global subsur-
face scattering, is that until now the convolution only had to be performed
once independently of the number of point lights in the scene. Using the
suggested approach, for global subsurface scattering, one must compute con-
volved irradiance textures for each light separately. By default it is necessary
to perform the convolution per unwrap. The added penalty of performing
the convolution per light makes the algorithm inherently more expensive. An
additional issue with this solution for global subsurface scattering is that, in
situations where the texel locations corresponding to xo and xi are relatively
close, global and local subsurface scattering will overlap. This issue will give
an unwanted halo at the silhouette as seen from the light source since the
overlap will cause contributions to be added twice. An approximate solution,
used in [dL07], is to fade off the contribution received by global subsurface
scattering when the texel locations corresponding to xi and xo are close to
each other.

3.5 Diffuse Color Maps

The reflectance profile implicitly determines the color of a material. Con-
sider once again the laser beam incident on a homogeneous semi-infinite
plane-parallel medium. The percentage of transmitted light which will scat-
ter around internally and finally make it back up to the surface is given by the
total diffuse reflectance (37). The remainder 1− Rtot is absorbed inside the
medium. The value Rtot is wavelength specific and represents the color of the
material. The single reflectance profile was derived based on the assumption
that the medium is homogeneous and thus gives only one color per material.
This presents a problem since a complex material such as skin presents both
low and high frequency variation in diffuse color across the surface. This
is where the assumption of homogeneity breaks down. To model such vari-
ation accurately we require a full participating media simulation which is
significantly more expensive.

Another option is to use, instead of one reflectance profile per material,
an entire texture map of generated reflectance profiles. This is impractical
and furthermore the entire derivation is based on the assumption that σs and
σa are constant per slab. In fact the reflectance profile is radially symmetric
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due to this assumption (and others given in section 2.6). Since the reflectance
profile is given as an analytical function in [JMLH01] the profile is evaluated
using the local material parameters at xi. Though it is not said so explicitly
this implies a texture, mapped to the surface, of the parameters σs(xi) and
σt(xi).

It would be impractical to apply this method to the multipole method, by
[DJ05], since reevaluation of the reflectance profile per sample xi is slow. For
this reason only a single reflectance profile is used per material but with color
variation stored in a texture mapped to the surface. This texture of colors
represents the varying total diffuse reflectance which presents a problem since
the reflectance profile also determines the material color. To solve this the
color must be neutralized in one or the other. Given the comprehensive
effort made in [DJ05] to derive a physically based reflectance profile it is
decided to normalize the texture map instead. This is done in [DJ05] by
scaling the channels such that the average intensity is the same across all
three Ravg = Gavg = Bavg.

In the paper by [dL07] the alternative is chosen where the reflectance
profile is normalized by dividing it by the total diffuse reflectance. Thus the
values of the texture map are preserved and used instead to define local sur-
face color. It is noted in this paper that modulation of the irradiance by this
diffuse color texture can be done either before or after convolution by the
reflectance profile. Modulating after convolution will preserve the high fre-
quency detail of the texture but will also neglect to color bleed the skin tones.
However, if the diffuse color texture came from a scan/photographs of real
skin then natural color bleeding has already occurred and thus modulating
after the convolution would be more appropriate. A compromise is suggested
in [dL07] where a user–defined value α ∈ [0; 1] is used to control how much
of the color is applied before convolution col[xi]

1−α and how much is applied
after col[xi]

α. Though there is no real physically based justification for this
approach one might interpret, using α = 1

2
, the process as an infinitesimal

absorption layer at the surface. Thus absorption by this layer occurs once
when light enters the medium and once again, after multiple scattering, as
it exits the medium.
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4 Conclusion

In this paper we have presented, in detail, the analysis of Henrik Wann Jensen
et al. [JMLH01] and Craig Donner et al. [DJ05]. Furthermore, we provide
a thorough walkthrough, and derivation, of the mathematical process used
to derive their separate, but based on similar principles, BSSRDFs for sub-
surface multi–scattered light. In the paper [DJ05] it was argued that the
reflectance profile in [JMLH01], for human skin, is inaccurate because this
is really composed of individual layers such as epidermis and dermis which
have different scattering and absorption values. It is reported in [DJ05] that
visual results become overly blurred and waxy as a consequence of this. For
this reason a multi–layer model of skin is used to produce a more accurate
reflectance profile based on a table of absorption and scattering values refer-
enced to [Tuc00]. However, it is unclear to us whether or not the reflectance
profile is wrong due to the single layer as claimed in [DJ05] or because the
chosen absorption and scattering values reversed and given in [JMLH01] are
wrong. We pointed out at the end of section 2.6 that the reflectance profile
given by equation (4) in [JMLH01] has errors in it which were not remedied
until later on. It seems plausible that the table of reversed parameters listed
in [JMLH01] could be wrong depending on whether or not the errors in this
equation were only in the paper or in the calculations as well. It would be
interesting to pursue these questions in our future work.

We have implemented the multi dipole model and generated the re-
flectance profile using the table of absorption and scattering values given
in [DJ05]. The result is shown in figure 6(b) and appears as a very thin spike
followed by a base at zero which is the profile of the impulse function which
is not desirable. To verify our implementation, to generate the reflectance
profile, we turned to a freely available program by the name (MCML) Monte
Carlo for Multi-Layered media by the authors Lihong Wang and Steven L.
Jacques [WJ]. We gave MCML the table values listed in [DJ05] and though
their implementation uses Monte Carlo simulation the resulting profiles are
strikingly similar to the result produced using our implementation of the
multi dipole method (see figures 6(b), 7(c) and 7(d)). Since the multi dipole
model is well established in the optics and medical physics community it
seems unlikely that the problem is rooted in this method. Furthermore,
given the well matched results between MCML and our implementation of
the multi dipole method (see section 2.8) we conclude that the problem is
more likely due to errors in the table given in [DJ05]. The table is referenced
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to [Tuc00] but according to the author Craig Donner the table will not be
found there in this exact form.

An observation, which supports our suspicion, is that the values for σa
and σ′t in [DJ05] are significantly larger compared to those given for skin in
[JMLH01] which could indicate a problem since both are defined relative to
mm. The multipole and the dipole generated reflectance profile is funda-
mentally a sum of e−σtr·d where d is a distance and σtr =

√
3σaσ′t. Such a

function will have a rapid fall-off when σtr is large which would indicate very
little light transmits through the first and second layer in [DJ05]. Ultimately,
we have decided to dismiss the validity of the table.

A more recent paper by Craig Donner et al. [DJ06b] proposes a two layer
model where absorption and scattering values are produced by choosing in-
puts to control oil, melanin and hemoglobin. These will allow you to match
different skin types such as Caucasian, African and Asian and various com-
binations of these. It seems unlikely that a designer would want to interface
with such parameters directly but assuming the method works it might be a
good way to create presets. For future work it would be interesting to inves-
tigate this approach further, and verify the procedure, by using the resulting
scattering and absorption values in our multi dipole implementation.

In regards to designers it seems more realistic that their ideal interface
would be to edit a spline curve in a way that is similar to the concept of
tweaking a ramp for a post filter. Possibly aided by a list of presets for
default reflectance profiles, to choose from, in the form of tweakable spline
curves. Considering that the reflectance profile is known to consist of a spike
and a broad base this might be easier than tweaking, for instance, scattering
and absorption directly. As an example it was mentioned in section 3.4 that
the reflectance profile used in the Matrix sequels [BL03] was made using a
simple function (45) which is known to appear as a spike and a broad base.

At this point the better reflectance profile appears to be the one presented
by Eugene d’Eon et al. [dL07] as a sum of Gaussians. This profile was
reversed, by the author, using analysis of two similar images of a human
head. One is an already existing image with subsurface scattering and the
other is a BRDF evaluation. The exact details on how they extract such a
reflectance profile are not public.

In section 3 we covered existing methods on accelerating the numerically
solved integration. Jensen himself [JB02] uses an octree to adaptively reduce
precision, for faster processing, at increasing distance which agrees with the
profile of the reflectance function. The method consists of two steps where
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the first pass evaluates the lighting, without subsurface scattering, for some
dense distribution of sample points. The second pass computes the subsurface
scattering, using the recorded irradiance, during the integration process. A
very practical aspect of this algorithm is that the subsurface scattering part
is done once independently of the applied light model and the amount of
sources. This is a property that is worth preserving in an adaptation of the
integration step to the GPU. For local subsurface scattering this is achieved
using the method in [dL07].
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